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Abstract

I present an analytical solution for the phase space evolu-
tion of electrons in a self-amplified spontaneous emission
Free Electron Laser (FEL) operating in the linear regime
before saturation, by solving the one dimensional FEL
equation together with the solution of the cubic equation,
which represents the evolution of the FEL power. The ana-
lytical solutions for the phase space evolution are comple-
mentary to the solution for the optical evolution and hold
until the optical amplitude grows greater than one-tenth of
the amplitude in saturation. The amplitude in saturation
obtained from a time dependent numerical calculation in
which the analytical solutions are used as the initial values
is shown to be equal to that obtained in the conventional
theories.

INTRODUCTION

A self-amplified spontaneous emission (SASE) free
electron laser (FEL) has been developed worldwide as an
intense coherent x-ray radiation source [1, 2, 3]. The devel-
opment has been supported by extensive theoretical studies
[4, 5, 6], which can account for various types of experimen-
tal results such as the exponential increase of SASE power
with the undulator length [1]. However, those studies have
mainly focused on the property of the radiation field, and
the phase space evolution of electrons of a SASE FEL has
been studied only in numerical simulations so far [6].

In this paper, I present an analytical solution for the
phase space evolution of electrons in a SASE FEL op-
erating in the linear regime before saturation, by solving
the one dimensional (1D) equations of electron motion to-
gether with the solution of the cubic equation, which rep-
resents the evolution of SASE power. The solutions for
the energy and phase changes of electrons are respectively
represented by sum of three independent terms similarly to
the solution of the cubic equation; an exponentially grow-
ing term, an exponentially decaying term and an oscillating
term. The 1D Maxwell equation results in the same field
gain as the solution of the cubic equation, when the solu-
tion for the electron phase is substituted into the Maxwell
equation. The solutions for the phase space evolution are
thus complementary to the solution for the optical evolu-
tion. The present solutions hold until the optical ampli-
tude grows greater than one-tenth of the amplitude in sat-
uration. The field in non-linear regime near saturation is
obtained from a numerical calculation which uses the ana-
lytical solutions as the initial values and solves the 1D FEL
equations. The peak amplitude in saturation obtained in the
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calculation agrees well with those obtained in conventional
theories [5, 6].

1D FEL EQUATIONS

The present study starts with the Colson’s dimension-
less FEL equations under the slowly varying envelope ap-
proximation (SVEA) [7]. Some of the variables used in the
present study are however defined differently from those of
Colson’s variables, as described later in this section. The
simplest situation is considered in the present study where
the electron pulse has a rectangular shape with density of
ne and an initial energy of γ0mc2 with no energy spread.
The electron pulse length is assumed to be longer than the
slippage distance Nwλ. Here Nw is the number of undula-
tor periods, λ = λw(1 + a2

w)/(2γ2
0) is the resonant wave-

length, λw = 2π/kw is the period of the undulator and aw

is the undulator parameter. The fundamental FEL parame-
ter in MKSA units is given by

ρ =
1
γ0

[eawF
√

ne/(ε0m)/(4ckw)]2/3, (1)

where F is unity for a helical undulator or Bessel func-
tion [JJ ] for a planar undulator [5]. The dimensionless
time is defined by τ = ct/λw, so that δτ = 1 corresponds
to the transit time of light through the undulator period.
The longitudinal position of the ith electron is defined by
ζi(τ) = [zi(t) − ct]/λ, so that δζ = 1 corresponds to λ.
The dimensionless field envelope is defined by

a(ζ, τ) =
2πeawλwF

γ0
2mc2

E(ζ, τ) exp[iφ(ζ, τ)], (2)

with phase φ(ζ, τ), which is equivalent to the Colson’s
dimensionless field envelope [8] divided by 2N2

w and to
the Bonifacio’s envelope [5] multiplied by (4πρ)2. Here
E(ζ, τ) is the rms optical field strength. The dimension-
less energy and phase of the ith electron are respectively
defined by µi(τ) = 4π[γi(t)− γ0]/γ0 and ψi(τ) = (kw +
k)zi(t) − ωt, where k = 2π/λ is the wave number of the
resonant wavelength λ.

In the present definition, evolutions of a(ζ, τ), µi(τ) and
ψi(τ) are respectively given by [8]

dµi(τ)
dτ

= a[ζi(τ), τ ] exp[iψi(τ)] + c.c., (3)

dψi(τ)
dτ

= µi(τ), (4)

∂a(ζ, τ)
∂τ

= −(4πρ)3〈exp[−iψi(τ)]〉ζi(τ)=ζ . (5)

The angular bracket indicates the average of all the elec-
trons in the volume V around ζ.
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PHASE SPACE EVOLUTION

The lasing process in FELs starts with formation of a
uniform field in time and space. This process is known as
the spectrum narrowing in the frequency domain [4] or as
the longitudinal phase mixing in the time domain [9]. The
evolution of the uniform field before saturation is repre-
sented by three complex roots of the cubic equation [5, 8].
The field in τ for the steady-state region where ζ < −τ is
given by

a(τ) =
|a(0)|eiφ(0)

3
[exp(4πρτeiπ/6) +

exp(−4πρτe−iπ/6) + exp(4πρτe−iπ/2)].(6)

The ith electron interacts with the field in the steady-
state region due to the slippage, and the energy modula-
tion at τ ′ during δτ ′ is given from Eq. (3) by δµi(τ ′) =
[a(τ ′)eiψi(τ

′) +c.c.]δτ ′. Here the linear regime before sat-
uration is defined as the regime where the electron phase
remains almost unchanged due to the weak FEL field, i.e.,
ψi(τ ′) ≈ ψi(0). The energy modulation in the linear
regime is expressed by δµi(τ ′) ≈ [a(τ ′)eiψi(0) + c.c.]δτ ′.
The energy change of the ith electron at time τ , µi(τ), is
given by the sum of those modulations during τ :

µi(τ) =
∫ τ

0

{a(τ ′) exp[iψi(0)] + c.c.}dτ ′. (7)

The integration of Eq. (7) after substitution of Eq. (6)
yields

µi(τ) =
2|a(0)|
3(4πρ)

×

{e2π
√

3ρτ cos[ψi(0) + φ(0) + 2πρτ − π/6]

−e−2π
√

3ρτ cos[ψi(0) + φ(0) + 2πρτ + π/6]
+ cos[ψi(0) + φ(0)− 4πρτ + π/2]}. (8)

The first term in the right hand side of Eq. (8) is the ex-
ponentially growing term, the second is the exponentially
decaying term, and the third is the oscillating term.

The phase modulation at τ ′ during δτ ′ is given from Eq.
(4) by δψi(τ ′) = µi(τ ′)δτ ′. The phase change of the ith
electron at time τ is given by the sum of those modulations
during τ :

∆ψi(τ) = ψi(τ)− ψi(0) =
∫ τ

0

µi(τ ′)dτ ′. (9)

The integration of Eq. (9) after substitution of Eq. (8)
yields

∆ψi(τ) =
2|a(0)|
3(4πρ)2

×

{e2π
√

3ρτ cos[ψi(0) + φ(0) + 2πρτ − π/3]

+e−2π
√

3ρτ cos[ψi(0) + φ(0) + 2πρτ + π/3]
+ cos[ψi(0) + φ(0)− 4πρτ + π]}. (10)

Equation (10) has the exponentially growing term, the ex-
ponentially decaying term and the oscillating term, simi-
larly to Eq. (8). Equations (8) and (10) are the analytical
expressions for the phase space evolution in a SASE FEL
operating in the linear regime; only numerical solutions for
those have been obtained previously [6].
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Figure 1: Electron distributions in a phase plane of
X = ∆ψi(τ)(4πρ)2/[|a(0)| exp(2π

√
3ρτ)/3] and Y =

µi(τ)(4πρ)/[|a(0)| exp(2π
√

3ρτ)/3] derived from Eqs.
(8) and (10) for 4πρτ = 2, 3, 4, 6, 10. The center of the
electron microbunch is located at (X,Y ) = (0,−1) when
4πρτ ≥ 4.

Using Eqs. (8) and (10), one can study the distribution of
electrons in a longitudinal phase space. The electrons con-
tained in the resonant wavelength at τ = 0 are numbered
from the front to back along the propagating direction in
the present study. The relative position between two adja-
cent electrons is represented by ζi(0) − ζi+1(0) > 0, and
the relative phase between two adjacent electrons is given
by ψi(0) > ψi+1(0), since ψi(τ) = 2πζi(τ) + kwzi(t)
by definition. One can calculate the values of Eqs. (8) and
(10) for each i and plot the point in a phase space of ∆ψi(τ)
and µi(τ). The point rotates counterclockwise in the phase
space, as i increases. The distribution of the electrons at
time instant τ in a longitudinal phase space of

X = ∆ψi(τ)
3(4πρ)2

|a(0)|e2π
√

3ρτ
(11)

and

Y = µi(τ)
3(4πρ)

|a(0)|e2π
√

3ρτ
(12)

is elliptical as shown in Fig. 1. The shape of the distribu-
tion gradually changes when 4πρτ < 4 and remains almost
constant when 4πρτ ≥ 4.

The gain of the steady state field in the linear regime
before saturation where |∆ψi(τ)| � 1 is obtained by sub-
stitution of Eq. (10) into Eq. (5) as follows:

∂a(τ)
∂τ

=
4πρ|a(0)|eiφ(0)

3
[exp(4πρτeiπ/6 + iπ/6)

− exp(−4πρτe−iπ/6 − iπ/6)
+ exp(4πρτe−iπ/2 − iπ/2)]. (13)
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Equation (13) is the same as ∂a(τ)/∂τ obtained from dif-
ferentiation of Eq. (6). This means that Eqs. (8) and (10)
are complementary to Eq. (6). The magnitudes of the gain
and phase shift are almost constant when 4πρτ ≥ 4.

EVOLUTION IN HIGH GAIN REGIME

In this section, the field and electron phase space evolu-
tions are studied in the high gain regime, which is defined
by 4πρτ ≥ 4 where the exponentially growing terms only
survive in Eqs. (6), (8) and (10). In this case, the field is
given by

a(τ) ∼ |a(0)|
3

e2π
√

3ρτeiφ(τ), (14)

where φ(τ) = 2πρτ + φ(0), and the energy and phase
changes of the ith electron are respectively given by

µi(τ) ∼ 2|a(0)|e2π
√

3ρτ

3(4πρ)
cos

[
ψi(0) + φ(τ)− π

6
]
, (15)

∆ψi(τ) ∼ 2|a(0)|e2π
√

3ρτ

3(4πρ)2
cos

[
ψi(0) + φ(τ)− π

3
]
. (16)

The shape of the distribution in a longitudinal phase space
of X and Y is simply represented by the ellipse X2 +Y 2−√

3XY = 1. The ellipse rotates clockwise as φ(τ) in-
creases linearly with τ . The electrons are lined along the
ellipse counterclockwise as the identification number i in-
creases. The electron at the microbunch center satisfies the
condition of ∆ψi(τ) = 0. The electron just in front of
the electron at the microbunch center satisfies the condi-
tion of ∆ψi−1(τ) < 0 for the bunch to be formed. Thus
the microbunch center in the high gain regime is located at
(X,Y ) = (0,−1) in Fig. 1 and the electrons inside the mi-
crobunch are concentrated around ψi(0) + φ(τ) − π/3 =
π/2 when 4πρτ ≥ 4.
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Figure 2: Electron distributions in a phase plane of ∆ψi(τ)
and µi(τ) derived from Eqs. (8) and (10) when 4πρτ = 10
(crosses), 11 (open squares), 12 (open circles). The time
evolution of four different electrons, initial phases of which
are ψi(0) (solid line), ψi(0) + π/2 (dotted line), ψi(0) + π
(dash-dotted line) and ψi(0) + 3π/2 (dashed line), are also
shown. The FEL parameter ρ = 0.00447 and |a(0)| =
7.1× 10−5ρ3/2 are used.

The evolution of the electron distribution in a longitu-
dinal phase space of ∆ψi(τ) and µi(τ) is shown in Fig.

2, where ρ = 0.00447 and |a(0)| = 7.1 × 10−5ρ3/2 are
used. Those values are typical parameters in JAERI FEL
[10]. The crosses are the distribution when 4πρτ = 10,
the open squares when 4πρτ = 11 and the open circles
when 4πρτ = 12. The figure also shows the time evolution
of four different electron particles, initial phases of which
are ψi(0) (solid line), ψi(0) + π/2 (dotted line), ψi(0) + π
(dash-dotted line) and ψi(0) + 3π/2 (dashed line). One
can find that the ellipse expands exponentially in size due
to the exponential increase of |a(τ)| and rotates clockwise
due to the linear increase of φ(τ). The intersection of the
ellipse and the line ∆ψi(τ) = 0 where µi(τ) < 0 is the lo-
cation of the microbunch center. The exponential decrease
of the energy of the microbunch center corresponds to the
exponential decrease of the energy of the microbunch as a
whole. The energy radiated by the microbunch is used for
the field amplification.

The field gain in the linear regime where |∆ψi(τ)| �
1 is given by Eq. (13). However, the gain deviates from
Eq. (13) in the non-linear regime near saturation where
the amplitude grows and |∆ψi(τ)| � 1 does not hold any
more for some electrons. The threshold amplitude for the
non-linear regime can be roughly estimated from Eq. (5) in
which Eqs. (14) and (16) are substituted as follows:

∂ |a(τ)|
(4πρ)2

∂(4πρτ)
= −〈cos{ψi(0) + φ(τ) + 2

|a(τ)|
(4πρ)2

×
cos[ψi(0) + φ(τ)− π/3]}〉ζi(τ)=ζ , (17)

∂φ(τ)
∂(4πρτ)

=
(4πρ)2

|a(τ)| 〈sin{ψi(0) + φ(τ) + 2
|a(τ)|
(4πρ)2

×
cos[ψi(0) + φ(τ)− π/3]}〉ζi(τ)=ζ . (18)

One can calculate the values of the right hand sides of Eqs.
(17) and (18) as a function of the value of |a(τ)|/(4πρ)2

and find that Eq. (13) begins to deviate from Eqs. (17) and
(18) around |a(τ)|/(4πρ)2 = 0.15. In the calculation the
value of ψi(0) + φ(τ) is uniform over 2π.

SATURATION

One can calculate the efficiency and amplitude in the
non-linear regime near saturation by solving the time de-
pendent 1D FEL equations together with the initial values
given by Eqs. (14), (15) and (16). In the high gain and lin-
ear regime, where 4πρτx ≥ 4 and |a(τx)|/(4πρ)2 = x for
x ≤ 0.15, Eq. (14) is rewritten by

a(τx)
(4πρ)2

∼ |a(0)|
3(4πρ)2

e2π
√

3ρτxeiφ(τx) = xeiφ(τx). (19)

The energy and phase of the ith electron at τx are derived
from substitution of Eq. (19) into Eqs. (15) and (16) and
are respectively given by

µi(τx)
4πρ

∼ 2x cos{ψi(0) + φ(τx)− π

6
}, (20)

ψi(τx) ∼ ψi(0) + 2x cos{ψi(0) + φ(τx)− π

3
}. (21)
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Figure 3: The amplitude gain ∂[|a(τ)|/(4πρ)2]/∂(4πρτ)
(solid line) and phase shift ∂φ(τ)/∂(4πρτ) (dotted line)
calculated numerically from the 1D FEL equations given
by Eqs. (22), (23), (24) and (25) as a function of 4πρ(τ −
τ0.1). The initial values for the calculation are derived from
Eqs. (19), (20) and (21).

Solving the 1D FEL equations numerically with the ini-
tial values given by Eqs. (19), (20) and (21), one can cal-
culate the phase space evolution of electrons and the field
evolution. The equations for τ ≥ τx are written as follows:

dµi(τ)
4πρ

d(4πρτ)
= 2

|a(τ)|
(4πρ)2

cos[ψi(τ) + φ(τ)], (22)

dψi(τ)
d(4πρτ)

=
µi(τ)
4πρ

, (23)

∂ |a(τ)|
(4πρ)2

∂(4πρτ)
= −〈cos[ψi(τ) + φ(τ)]〉ζi=ζ , (24)

∂φ(τ)
∂(4πρτ)

=
(4πρ)2

|a(τ)| 〈sin[ψi(τ) + φ(τ)]〉ζi=ζ . (25)

Figure 3 shows ∂[|a(τ)|/(4πρ)2]/∂(4πρτ) and
∂φ(τ)/∂(4πρτ) as a function of 4πρ(τ − τx) when
x = 0.1. It is found that ∂[|a(τ)|/(4πρ)2]/∂(4πρτ)
decreases down to 0 when 4πρ(τp − τ0.1) = 3.7. Here τp

is the time when the efficiency and amplitude reach their
peaks and the amplitude gain turns to negative.

Integration of ∂|a(τ)|/∂(4πρτ) from 4πρτ0.1 to 4πρτp

yields
∫ 4πρτp

4πρτ0.1

∂|a(τ)|
∂(4πρτ)

d(4πρτ) = 1.08(4πρ)2.

The peak amplitude is thus given by

|a(τp)| = 1.18(4πρ)2, (26)

which agrees well with the peak amplitude of the SASE in
the steady-state regime obtained in a numerical calculation
[5]. Equation (26) does not depend on x.

CONCLUSION

The phase space evolution of electrons in a SASE FEL
operating in the linear regime before saturation where

|∆ψi(τ)| � 1 has been solved analytically from the 1D
FEL equation. The evolutions of ∆ψi(τ) and µi(τ) are
represented by sum of three independent analytical solu-
tions similarly to the evolution of the SASE field; an ex-
ponentially growing term, an exponentially decaying term
and an oscillating term. The distribution in a longitudinal
phase space of ∆ψi(τ) and µi(τ) expands exponentially
with time in size, rotating clockwise linearly in the high
gain regime where 4πρτ ≥ 4. These expansion in size
and clockwise rotation corresponds to the exponential in-
crease of the amplitude and linear increase of the phase
of the radiation field, respectively. The microbunch cen-
ter is located where ∆ψi(τ) = 0 and µi(τ) < 0, and the
energy of the microbunch center decreases exponentially,
which corresponds to the exponential increase of the SASE
power. The analytical solutions hold until the optical am-
plitude grows greater than one-tenth of the amplitude in sat-
uration. A numerical calculation which solves the 1D FEL
equations together with initial values given by the present
analytical solutions results in the peak amplitude in satu-
ration |a(τp)| = 1.18(4πρ)2, which agrees well with the
conventional theories.
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