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Abstract 

Many years ago Fajans, Kirkpatrick and Bekefi  (FKB) 
studied off-axis orbits in a realistic helical wiggler, both 
experimentally and theoretically.  They found that as the 
distance from the axis of symmetry to the guiding center 
increased, both the mean axial velocity and the precession 
frequency of the guiding center varied.   They proposed a 
clever semi-empirical model which yielded an excellent 
description of both these variations.  We point out that a 
approximate model proposed by us several years ago can 
be made to predict these delicate effects correctly, 
provided we extend our truncated quadratic Hamiltonian 
to include appropriate cubic and quartic terms. We 
develop an argument similar to the virial theorem to 
compare time averaged and fixed-point values of 
dynamical variables.  Illustrative comparisons of our 
model with numerical calculation are presented. 

INTRODUCTION 
In 1985 Fajans, Kirkpatrick and Bekefi performed an 

experiment with a low-energy free electron laser (FEL) 
operating in the amplifier mode in the microwave 
region[1].  The wiggler was helical, and a uniform axial 
field was present.  The electron beam was furnished by a 
pulse-line diode in single shot operation.  Among other 
studies, they investigated what happened when the beam 
was injected off axis, simply by displacing their wiggler 
in the transverse direction. Both beam and FEL 
measurements were carried out. In general, they found 
that for small displacements, the FEL operation remained 
satisfactory.  Two properties of the beam were measured 
quantitatively as a function of the off-axis injection 
distance.  The mean axial velocity was observed to satisfy  
a simple quadratic law 

 ( ) ( ) 20z zy K yββ β= + + ⋅ ⋅ ⋅ 

where Kβ is a number which depends on the FEL 
parameters, and y denotes the displacement of the beam 
centroid from the wiggler axis at injection. The symbol 

denotes the time average of the corresponding 
dynamical quantity Throughout this paper we shall use 
only dimensionless quantities with mc as the unit of 
momentum, 1/kw the unit of length and ckw the unit of 
frequency. A second important property was the 
precession of the displaced quasi-circular FEL orbits.  
Again, for small displacements, a simple quadratic 
behavior was found for the precession frequency ωP. 

 ( ) ( ) 20P P Py K yω ω= + + ⋅ ⋅ ⋅ 
where KP denotes another constant.  Since the quantities 

( )0zβ and ( )0Pω are just the values on the ideal orbit, 
they may be considered as known.  The real task is to 
compute the quantities Kβ and KP . 
 

The authors analyzed the wiggler magnetic field in 
detail, and proposed two formulas to describe the 
modification of the mean axial velocity and the 
precession frequency.  The former is described by 
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where γ is the dimensionless energy.  The quantities Ω0 
and Ωw  are 2

0 / weB mc k  and 2/ wweB mc k , respectively,  

yg denotes the off-axis injection distance, and λ is wk ρ± , 
where ρ is the radius of the FEL motion. A somewhat 
simpler expression had been proposed by Freund and 
Ganguly [2],   
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For the precession, FKB proposed the formula 
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In the three cases investigated by FKB, their formula 
were remarkably successful.  That of Freund and Ganguly 
for the diminution of the mean axial speed was  somewhat 
less precise, but adequate. 
 
 

Given the success of these formulas at describing the 
data, one might well consider the problem solved.  
However, having proposed an analytic (but approximate) 
method of calculating the trajectories in a helical wiggler 
with axial guide field [3], we felt challenged to show that 
our model could be used to generate equally successful 
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expressions, perhaps in a more systematic way. We don�t 
know the details of the adiabatic magnetic field used by 
FKB to inject into the wiggler, so we address a related but 
slightly different problem.  Suppose that an electron is on 
the ideal axially centered helical  trajectory, and then 
displace the electron by a small amount in a transverse 
direction, leaving its velocity vector unchanged. We 
remind the reader that the ideal orbit satisfies two 
conditions: 
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where ρ denotes the constant radius of the helix.  The 
notation Group I corresponds to 0zγβ > Ω  and Group II  

to 0zγβ < Ω .  There is also the reversed field 
configuration, studied by Conde and Bekefi [4], where the 
axial velocity is anti-parallel to the axial field, or 

0 0zγβ Ω < .  If one chooses the z-direction such that 

0 0Ω > , then the reversed field is a special case of Group 
II, typically with a very small radius.  The effect of a 
small displacement is then calculated by linearizing the 
equations of motion around the ideal helix.  This 
procedure is described in detail in the monograph of 
Freund and Antonsen [5].  The electron then has two 
independent normal modes of oscillation, whose 
frequencies are well-known.  It turns out that one of these 
two frequencies is numerically close to the unperturbed 
constant axial velocity βz. 
 

 In our approach to calculating the trajectories, the key 
role is played by the Helical Invariant, Pz, a conserved 
quantity which is a consequence of the screw symmetry 
of the wiggler field [6].  We find the fixed point of the 
Hamiltonian (where the first derivatives with respect to 
our chosen dynamical variables vanish), expand to second 
order in our variables, and then find the normal modes of 
oscillation of the resulting quadratic system. If we denote 
the complex normal mode amplitudes in our model 
by A+ and A− , with the Poisson brackets { }*,A A i

α β αβ
δ= , 

our Hamiltonian may be written as 
  
 ( )2 2 3

fpH H A A O A+ + − −= + Ω + Ω + . 
Neglecting the cubic and higher order terms, we find the 
simple dynamics,  

 ( ) ( )0 i tA t A e α

α α
Ω= . 

 
 With our rather complicated choice of dynamical 

variables the  transformation to normal modes was 
straightforward, and we obtained a quantitatively accurate 
description of the transverse motion as a Ptolemaic 
superposition of three independent circular motions.  One 

is the projection of the standard FEL helix, the second, 
driven mainly by the mismatch in transverse velocity, 
occurs at a frequency near the relativistic cyclotron field 

0
/ γΩ , while the third is a very slow motion, whose 

effective frequency is z ββ − Ω , where 
β

Ω  denotes 

that oscillation frequency which is close to zβ .  It is this 
slow motion that is the precession seen by FKB. 

In terms of our model, the calculation of the effects 
observed by FKB is straightforward.  Displacing the 
electron from the ideal helical orbit produces a change in 
the Helical Invariant that is second order in the 
displacement.  The resulting changes in the axial velocity 
and frequency are readily computed, and can be compared 
to experiment.  Proceeding in this way, we find extremely 
poor agreement between our calculations and experiment.  
  

TIME AVERAGES AND FIXED POINTS 
The difficulty encountered in attempting to calculate 

the mean axial velocity was traced to the source, the fact 
that the time average of a dynamical variable in the 
neighborhood of a fixed point is not its value at the fixed 
point.  The time averages of our normal modes of 
oscillation, which we had assumed to be zero, were in fact 
different from zero.  If our quadratic approximation to the 
Hamiltonian were exact, this would not occur.  However, 
the cubic terms in the Hamiltonian generate such non-
zero time average values.  While the inclusion of the 
cubic terms into our model makes it non-soluble, it is 
possible by using a perturbation approach to obtain the 
lowest order corrections by calculating third derivatives at 
the fixed point. The required labor is greatly facilitated by 
using symbolic manipulators such as MAPLE or 
Mathematica.  If one is interested in calculating the 
dependence of the precession frequency on the 
displacement, some fourth derivatives at the fixed point 
are also needed.  We present below a sketch of our 
method.   

 
The essential tool in our approach is a proposition 

similar to the virial theorem in classical mechanics.  
Given a general Hamiltonian, and a complex dynamical 
variable A(t) of the sort we use, we consider the time 
average of the following quantity 

 ( )( ) ( ) ( )0
lim 0

i T
i t
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A T e Qd
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−
= =  

provided the variable is A(t) bounded. But by Hamilton�s 
equations 

( )( ) ( )
*

i t i td H
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ω ωω
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. 

For technical reasons, it is more convenient to compute 
the higher order terms using the squared Hamiltonian, and 
we arrive the following result 
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where  represents the cubic and higher order terms in the 
multi-variable Taylor series expansion of the squared 
Hamiltonian at the fixed point.  For our purposes, we 
keep only the cubic terms, and find non-vanishing 
contributions only for the nine following values of the 
arbitrary frequency ω,  

 
( ) ( ){ }0, 2 2 , ,jω + − + − + −= ± Ω ± Ω Ω ± Ω − Ω ± Ω . 

This means we may write, correct to second order in the 
displacement,  

 ( ) ( )
9

1

0 ji ti t

j
j

A t A e a e ω
+

−Ω

+ + +
=

= +∑  

with a similar expression for ( )A t− .  Here the quantities 

ja + are second order in the displacement. We find 
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where on the right-hand-side only the first approximation 
to the variables is to be used. 

HIGHER ORDER TERMS 
 

In order to compute the quantities ja + , we need the 
cubic part of the squared Hamiltonian, which we write as 
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where cc denotes complex conjugate. The ten quantities 
K+ etc. may be computed most easily if we  write the 
squared Hamiltonian in cylindrical coordinates, as in ref. 
[7], 
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The complex dynamical variables A+ and A- are linearly 
related to the usual variables,  
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where ρf, ψf  and ( )

f
pψ denote the values of the variables 

at the fixed point. The time averaged axial velocity is then 
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Explicit calculation yields  
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and similarly for  A
−

.  In these expressions the 
amplitudes are linear in the displacement y, and we thus 
can calculate the coefficient of y2 in 

z
β , Kβ . 

 
CHANGES IN TIME AVERAGED 

FREQUENCIES 
 

In order to calculate the slope of the FKB precession 
frequency, we must calculate the change in the time 
average of the oscillation frequencies caused by the 
higher order terms in the Hamiltonian. The relevant 
equation is  

 
2

*
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4
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This receives contributions from both  the cubic part and 
from three of the many quartic contributions.  These may 
be written as 

2 4 4 2 2
H M A M A N A A

quartic +
= + + + ⋅ ⋅ ⋅+ + − − + −  

The details of the explicit calculation are too long to be 
given in this paper, and we give only the final result: 
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For the quantity −Ω a similar expression holds 
provided one makes the substitution + ↔ − throughout. 
Note that C C+− −+= .  

COMPARISON WITH NUMERICAL 
SIMULATIONS 

At this point we can calculate Kβ and KP.  However, in 
order to verify this analysis, we carried out numerical 
calculations of the trajectories using solvers of differential 
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equations available on MAPLE and Mathematica.  Our 
approach is simple.  We start with an electron on the ideal 
trajectory suited to its energy.  We then displace the 
position of the electron tangentially through a distance y, 
keeping the velocity unchanged.  We then calculate the 
trajectory of the electron for long times, typically 100 
periods, in order to obtain reliable numerical estimations 
of the time averaged axial velocity and the precession 
frequency.  We performed this calculation for the three 
cases studied by FKB. In each of these, the frequency 
concerned by the precession was Ω+ so we added two 
more, for which  the relevant frequency was Ω-.   These 
include a Group II configuration with a large axial field, 
which we label low-ρ, and a reversed field configuration, 
of the sort investigated by Conde and Belkefi.  The results 
are summarized in the Table, which indicates various 
properties of the trajectory, the frequencies, the 
precession frequency intercept ωP(0) (in the FKB units of 
108s-1).  The last eight lines show comparisons of our 
theory (denoted by T) with the simulations (S).  The 
agreement between these is quite good.   
 
 FKB a 

group I 
FKB b 
group II 

FKB c 
group II 

low ρ,  
Group II 

reversed 
βz B0 < 0

B0 (T) 0.16 1.312 0.4 1.8 1 
Bw  (T) 0.025 0.16863 0.05833 0.025 0.063 0.147 
V (MeV) 0.16863 1.2264 0.16863 0.750 0.750 
λw (cm) 3.30 3 3.30 3.18 3.18 
kw (cm-1) 1.904 2.094 1.904 1.97584 1.97584 
γ 1.33 3.4 1.33 2.46771 2.46771 
ρf    0.22461 0.31543 0.21602 0.06073 0.08433 
 (βz) f 0.64327 0.911498 0.644436 0.912532 -0.9110 
ψ f π 0 0 0 0 

Ω+ 0.65416 0.90481 0.640016 1.25171 2.10919 

Ω− -0.23792 0.19576 0.286011 0.91155 -0.90526
ωP(0)  -6.217 4.199 2.523 0.5812 -3.389 
d+ -0.00110 -0.00304 -0.00230 -0.0991 -0.1018 
d− -0.11976 -0.38085 -0.16418 0.00047 -0.0008 

2y
A+ℑ

T 
-1.580 -3.290 -2.793 -13.46 -7.133 

2y
A+ℑ

S 
-1.575 -3.292 -2.795 -13.15 -7.128 

2y
A−ℑ

T 
-1.085 -1.246 -1.525 -20.68 -10.69 

2y
A−ℑ

S 
-1.085 -1.247 -1.524 -20.88 -10.76 

Kβ  T -0.00952 -0.0165 -0.0076 -0.00094 0.0017 
Kβ  S -0.0095 -0.0165 -0.0076 -0.00094 0.0017 
KP  T -2.4868 1.3272 0.89201 0.2112 0.07146 
KP  S -2.56 1.31 0.88 0.20 0.072 

TABLE 

Comparison of theoretical (T) and simulation (S) values 
for various quantities.  Five different configuration were 
studied FKB a, b and c, low ρ Group II, and reversed 
field. 

 

CONCLUSION 
 
We may thus conclude that our approach of calculating 

the contributions of the higher perturbatively is 
successful. However, one word of caution is necessary. 
The generally small values we find for KP, especially in 
columns 5 and 6, are the result of cancellations of much 
greater changes in the separate pieces.  Indeed, the change 
in the fixed point frequency due to the displacement is 
almost exactly cancelled by the contribution of the higher 
order cubic and quartic terms.  This suggests that in a yet 
more sophisticated approach such cancellations could be 
avoided. 
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