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Abstract

Simple formulas for optimization of VUV and X-ray
SASE FELs are presented. The FEL gain length and the
optimal beta-function are explicitly expressed in terms of
the electron beam and undulator parameters. The FEL sat-
uration length is estimated taking into account energy dif-
fusion due to quantum fluctuations of the undulator radia-
tion. Examples of the FEL optimization are given. Parame-
ters of a SASE FEL, operating at the Compton wavelength,
are suggested.

INTRODUCTION

At the first stage of a SASE FEL (self-amplified spon-
taneous emission) [1] design one looks for the dependence
of the FEL saturation length on the wavelength, electron
beam parameters, undulator parameters, and beta-function.
Usually the parameters are optimized for the shortest de-
sign wavelength since the saturation length is the largest
in this case. The saturation length is proportional to the
gain length (e-folding length) of the fundamental transverse
mode (see [2] for more details). The gain length can be
found by the solution of the FEL eigenvalue equation.

The eigenvalue equation for a high-gain FEL, including
diffraction of radiation, emittance, and energy spread, was
derived in [3, 4]. There exist approximate solutions [5, 6]
of this equation. The exact solution was presented in [7]
as well as an approximate solution (with a limited validity
range). The latter solution was fitted [7] using 3 dimen-
sionless groups of parameters, and 19 fitting coefficients.
An approximate solution, that fits the exact solution in the
entire parameter space with high accuracy (better that 1 %),
was presented in [8]. A numerical algorithm for finding this
approximate solution is very fast and robust. It was used to
obtain the main results of this paper.

In this paper we present the fitting formula for the FEL
gain length written down explicitly in terms of the beam
and undulator parameters. This formula is not universal,
but it provides a good accuracy (better than 5 %) in a typi-
cal parameter range of VUV and X-ray FELs. We present
the formula without derivation since it was not derived an-
alytically. In some sense the parametric dependencies were
guessed, and then the fitting coefficients were found from
the solution of the eigenvalue equation. For instance, we
used only 2 fitting coefficients for the gain length with the
optimized beta-function. The formulas of this paper allow
one to quickly estimate FEL saturation length, including
the effect of energy diffusion in the undulator due to quan-
tum fluctuations of the undulator radiation. In addition,

we present two practical examples of using our design for-
mulas: optimization of SASE FEL with negligible energy
spread, and the limitation on SASE FEL wavelength taking
into account quantum diffusion. In particular, we suggest
for the first time the set of parameters for a SASE FEL op-
erating at the Compton wavelength.

GAIN LENGTH FOR THE OPTIMIZED
BETA-FUNCTION

Let us consider an axisymmetric electron beam with a
current I , and a Gaussian distribution in transverse phase
space and in energy [7, 8]. The focusing structure in the un-
dulator is a superposition of the natural undulator focusing
and an external alternating-gradient focusing. The eigen-
value equation [7, 8] is valid under the condition [8]:
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where Lf is the period of the external focusing structure,
β is an average beta-function, ε is the rms emittance of the
electron beam, and λr is the FEL resonant wavelength. The
resonance condition is written as:

λr =
λw(1 + K2)

2γ2
. (1)

Here λw is the undulator period, γ is relativistic factor, and
K is the rms undulator parameter:

K = 0.934 λw[cm] Brms[T] , (2)

Brms being the rms undulator field.
In what follows we assume that the beta-function is opti-

mized so that the FEL gain length takes the minimal value
for given wavelength, beam and undulator parameters. Un-
der this condition the solution of the eigenvalue equation
for the field gain length can be approximated as follows:

Lg � Lg0 (1 + δ) , (3)
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Figure 1: Gain length versus resonant wavelength for the
following set of parameters: λw = 3 cm, K = 1, I = 2.5
kA, εn = 2 µm, σE = 1 MeV. Undulator is planar, reso-
nance is maintained by tuning electron beam energy, beta-
function is optimized for each case. Line is the solution of
the eigenvalue equation [8], and the circles are calculated
using formula (3).

The following notations are introduced here: IA = 17 kA
is the Alfven current, εn = γε is the rms normalized emit-
tance, σγ = σE/mc2 is the rms energy spread (in units
of the rest energy), AJJ = 1 for a helical undulator and
AJJ = J0(K2/2(1 + K2)) − J1(K2/2(1 + K2)) for a
planar undulator, J0 and J1 are the Bessel functions of the
first kind.

The formula (3) provides an accuracy better than 5 % in
the domain of parameters defined as follows

1 <
2πε

λr
< 5 (6)

δ < 2.5

{
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2
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(7)

Note that the condition (6) is usually satisfied in realistic
designs of VUV and X-ray FELs when one does optimiza-
tion for the shortest wavelength (defining the total undula-
tor length). The condition (7) is practically not a limitation.
To illustrate the accuracy of the formula (3) we present a
numerical example. The following nominal operating point
is chosen: λr = 1 nm, λw = 3 cm, K = 1, I = 2.5 kA,
εn = 2 µm, σE = 1 MeV, energy is 2.8 GeV, undulator is
planar. We scan over different parameters and compare the
gain length calculated with formula (3) and by solving the
eigenvalue equation [8]. The results are presented in Figs.
1-6. We have carefully checked the accuracy of formula
(3) for different combinations of dimensional parameters
entering (4) and (5). The deviation of the approximate for-
mula (3) from the solution of the eigenvalue equation [8] is
indeed defined only by the parameters 2πε/λr and δ, and
is within 5 % in the above specified domain.

We also present here an approximate expression for the
optimal beta-function (an accuracy is about 10 % in the
above mentioned parameter range):

Figure 2: Gain length versus undulator period for the fol-
lowing set of parameters: λr = 1 nm, K = 1, I = 2.5
kA, εn = 2 µm, σE = 1 MeV. Undulator is planar, reso-
nance is maintained by tuning electron beam energy, beta-
function is optimized for each case. Line is the solution of
the eigenvalue equation [8], and the circles are calculated
using formula (3).
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Note that dependence of the gain length on beta-function is
rather weak when β > βopt.

Finally, let us note that the saturation length cannot be di-
rectly found from the eigenvalue equation. However, with
an accuracy 10-20 % one can accept the following estimate:

Lsat � 10 Lg (9)

EFFECT OF QUANTUM DIFFUSION IN
AN UNDULATOR

Energy spread growth due to the quantum fluctuations
of the spontaneous undulator radiation can be an important
effect [1, 10] in future SASE FELs. The rate of the energy
diffusion is given by [11]:

dσ2
γ

dz
=

14
15

λcreγ
4κ3

wK2F (K) , (10)

where λc = 3.86 × 10−11 cm, re = 2.82 × 10−13 cm,
κw = 2π/λw, and

F (K) = 1.42K + (1 + 1.50K + 0.95K2)−1

for helical undulator

F (K) = 1.70K + (1 + 1.88K + 0.80K2)−1

for planar undulator (11)

To estimate the FEL saturation length, we accept the fol-
lowing scheme. First, we neglect energy diffusion and find
a zeroth order approximation to the saturation length from

140 E.L. Saldin et al. / Proceedings of the 2004 FEL Conference, 139-142

MOPOS15



Figure 3: Gain length versus undulator parameter K for the
following set of parameters: λr = 1 nm, λw = 3 cm,
I = 2.5 kA, εn = 2 µm, σE = 1 MeV. Undulator is planar,
resonance is maintained by tuning electron beam energy,
beta-function is optimized for each case. Line is the so-
lution of the eigenvalue equation [8], and the circles are
calculated using formula (3).

Figure 4: Gain length versus normalized emittance for the
following set of parameters: λr = 1 nm, λw = 3 cm, K =
1, I = 2.5 kA, σE = 1 MeV. Undulator is planar, beta-
function is optimized for each case. Line is the solution of
the eigenvalue equation [8], and the circles are calculated
using formula (3).

(9), (3)-(5). Then we calculate an induced energy spread in
the middle of the undulator from (10), add it quadratically
to the initial energy spread, and find a new expression for
δ. Then, using (9), (3)-(5), we find the first approximation
to the saturation length. Then we do the next iteration, etc.

The saturation length is then proportional to a series
∞∑

n=0
δn
q

and is given by

Lsat � 10 Lg0
1 + δ
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, (12)

where
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Note that in the latter formula the powers are somewhat
simplified. Comparing Eqs. (9) and (12), we can introduce
an effective parameter

δeff =
δ + δq

1− δq
, (14)

which should be used instead of δ in (7) to check the ap-
plicability range and in (8) to estimate the optimal beta-
function.

Although formula (12) is rather crude estimate, it can be
used for quick orientation in the parameter space with a
posteriori check using a numerical simulation code.

OPTIMIZED FEL WITH A NEGLIGIBLE
ENERGY SPREAD

Formulas, presented in the previous Sections, can be
used for the optimization of undulator parameters as soon
as a specific type of the undulator is chosen. We demon-
strate such a possibility with the planar NdFeB undulator
of which magnetic field can be described by the following
formula [9]:

Bmax[T] = 3.694 exp

[
−5.068

g

λw
+ 1.52

(
g

λw

)2
]

for 0.1 < g/λw < 1 (15)

where g is the undulator gap. The rms value of the param-
eter K is given by Eq. (2) with Brms = Bmax/

√
2.

We assume that the energy spread effect on the FEL op-
eration can be neglected (δ , δq → 0). Then, using (3), (2)
and (15), we minimize the gain length for a given undulator
gap. The optimal undulator period is independent of λr, I
and εn and is found to be

(λw)opt[cm] � 1 + 2 g [cm] for g > 0.5 cm (16)

The optimal value of K is then defined from (15) and (2),
the electron beam energy - from (1), and the optimal beta-
function - from (8). The minimal gain length can be ex-
pressed (in practical units) as follows:

(Lg)min[m] � 20
ε
5/6
n [µm] g1/2[cm]

I1/2[kA]λ2/3
r [Å]

(17)

Using estimate of the saturation length (9), we find
the minimal wavelength at which SASE FEL can saturate
within the given undulator length Lw:

(λr)min[Å] � 3× 103 ε
5/4
n [µm] g3/4[cm]

I3/4[kA]L3/2
w [m]

(18)
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Figure 5: Gain length versus current for the following set of
parameters: λr = 1 nm, λw = 3 cm, K = 1, εn = 2 µm,
σE = 1 MeV. Undulator is planar, beta-function is opti-
mized for each case. Line is the solution of the eigenvalue
equation [8], and the circles are calculated using formula
(3).

SASE FEL AT THE COMPTON
WAVELENGTH

Another example is the optimization of sub-Angstrom
FELs for which the effect of quantum diffusion in the un-
dulator can play an important role. We consider the case
when the energy spread is dominated by the quantum dif-
fusion, and neglect initial energy spread (δ → 0). Optimiz-
ing undulator period and parameter K in (12), we get the
following estimate for the minimal wavelength1:

(λr)
q
min[Å] � 4 εn[µm]

I3/5[kA]L2/5
w [m]

(19)

Note that in some cases the optimal undulator parame-
ters can be impractical. In any case, the estimate (19) gives
a lower limit. The following numerical examples show that
one can be close to this limit with technically feasible un-
dulator parameters.

Let us consider the electron beam parameters (peak cur-
rent and emittance) assumed in [12]. One of the exam-
ples, considered in [12], is a SASE FEL operating at λr =
0.28 Å with I = 5kA and εn = 0.3µm. Another example
is even more ambitious: λr = 0.12 Å with I = 5kA and
εn = 0.1µm.

We try to push the wavelength closer to the extreme
given by Eq. (19). In our first example we assume I = 5kA
and εn = 0.3µm. With these parameters the wavelength
λr = 0.1 Å can be reached at the electron beam energy 23
GeV in a planar undulator with λw = 2 cm and K = 1
(with the gap g = 0.7 cm according to (15) and (2)). The
optimal beta-function is about 40 m, and the saturation
length is estimated at 160 m.

The second example is a SASE FEL operating at the
Compton wavelength, λr = λc = 0.0234 Å (photon en-
ergy is 0.5 MeV). We assume the electron beam with

1One can notice the difference with more crude estimate presented in
[10]

Figure 6: Gain length versus energy spread for the follow-
ing set of parameters: λr = 1 nm, λw = 3 cm, K = 1,
I = 2.5 kA, εn = 2 µm. Undulator is planar, beta-function
is optimized for each case. Line is the solution of the eigen-
value equation [8], and the circles are calculated using for-
mula (3).

I = 5kA and εn = 0.1µm, the energy is 40 GeV. We
choose a helical undulator with λw = 2 cm and K = 0.7.
The optimal beta-function is about 35 m, and the saturation
is reached within 200 m. Our estimates show that quantum
effects, other than energy diffusion, give small corrections
to the classical description and can be neglected.
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