
BENCHMARK OF ASTRA WITH ANALYTICAL SOLUTION FOR THE
LONGITUDINAL PLASMA OSCILLATION PROBLEM

Gianluca Geloni, Evgeni Saldin, Evgeni Schneidmiller and Mikhail Yurkov
Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85,

22607 Hamburg, Germany
Abstract

During the design of X-FELs, space-charge codes are re-
quired to simulate the evolution of longitudinal plasma os-
cillation within an electron beam in connection with LSC
microbunching instability [1] and certain pump-probe syn-
chronization schemes [2]. In the paper [3] we presented an
analytical solution to the initial value problem for longitu-
dinal plasma oscillation in an electron beam. Such a result,
besides its theoretical importance, allows one to benchmark
space-charge simulation programs against a self-consistent
solution of the evolution problem. In this paper we present
a comparison between our results [3] and the outcomes of
the simulation code ASTRA.

INTRODUCTION

Start-to-end simulations of X-FEL systems require the
use of several codes, able to deal with different parts of
the setup. In particular, at low energies, simulations must
account for space-charge interactions. These codes are
also used in connection with LSC microbunching instabil-
ity problems [1] and certain pump-probe synchronization
schemes [2]: benchmarking them correctly is of critical im-
portance since it is the only way to build up confidence in
their outcomes.

In this paper we present first results of an ongoing bench-
mark of the space-charge code ASTRA. Our work takes
advantage of the first three-dimensional, analytical model
for the description of plasma oscillations within a relativis-
tic electron beam, which has been described in [3] and [4].
This is the first time that such an analytical, self-consistent
model is used to benchmark space-charge codes, which are
usually compared with solutions of the Poisson equation
for specific charge distributions. We claim that our method
should be considered as a standard for benchmarking these
codes from now on. In the following we describe how the
simulation is set up, how it is compared with analytical re-
sults and we report the outcomes of this comparison as re-
gards the estimation of a typical evolution parameter.

ANALYTICAL STUDY

We consider a radially uniform electron beam with trans-
verse dimension r0 = 1.0 mm and length lb = 2.2 cm
propagating with kinetic energy Ek = 6.0 MeV and cur-
rent I = 44.97 A. Longitudinal and transverse beam emit-
tances are set to zero. A ρ = 5% density modulation is
considered at a wavelength λm = 1 mm in the longitudi-
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Figure 1: Relative current modulation level as a function
of position inside the beam line (in m) and sinusoidal fit -
analytical results. Parameters are given in the text.

nal direction. This modulation is uniform in the transverse
direction.

Our analytical theory [4] deals with the longitudinal dy-
namics of the system, so it is applicable, roughly speak-
ing, when the beam does not evolve, transversely, during
the characteristic plasma oscillation length λp. This can be
implemented in a simulation by focusing the beam using
as we did, for instance, a longitudinal magnetic field Bz

(compare with the next Section).
In our theory we describe the system evolution equiva-

lently in terms of fields or currents. The former descrip-
tion is suitable, as has been remarked in [4] for numer-
ical manipulations, while the latter gives us back a fully
analytical model: the results out of these descriptions, of
course, coincide. Our theory provides the longitudinal field
Ez(z, r) and current density Jz(z, r) as a function of the
longitudinal z and radial position r. As a first investiga-
tion, nevertheless, we were interested in how these quanti-
ties, averaged over the transverse beam distribution, com-
pare with the analogous ones from ASTRA. Averaging Jz

over the transverse distribution of the beam we get back
the beam current I(z) =

∫ r0

0
Jzrdr, while integrating Ez

over z and averaging as for Jz we get back the momentum
pz(z) = −2e/(cr2

0)
∫ r

0
(
∫ z

0
Ezdz′)rdr.

In our theory the fields are presented as a superposi-
tion of propagating eigenmodes. The parameters described
above correspond to a region where the one-dimensional
asymptotic treatment of plasma oscillation is not appli-
cable, and care was taken to choose them such that the
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Figure 2: Momentum modulation (in eV/c) as a function
of position inside the beam line (in m) and sinusoidal fit -
analytical results. Parameters are given in the text.

first eigenmode is dominant with respect to the others. In
this case the beam current and the longitudinal momen-
tum, considered as functions of z, are nearly sinusoidal and
therefore can be easily fitted 1 giving back, in both cases,
the same estimation for the wavelength of plasma oscilla-
tions, λp = 7.34 m. In Fig. 1 we present the modulation
level as a function of z, while in Fig. 2 we plot pz(z) as
from our theory. Both figures also include sinusoidal fits.
An alternative estimation of the plasma wavelength can be
obtained, in the approximation when only the first eigen-
function is important, using the following equation (com-
pare with [4]):

λp =
[
4I/(IAr2

0γγ2
z )

]1/2
/Λ0 � 7.31m . (1)

Here IA = mc3/e is the Alfven current, γ = γz = 12.7417
corresponds to a kinetic energy of 6 MeV and the first
eigenvalue Λ0 = 0.3804 is obtained from our analytical
method: note that Λ0 is sensibly different from unity, which
is a clear signature of the fact that the one-dimensional the-
ory cannot be applied.

Together with the benchmark for the full program, one
can obtain, as a sort of by-product, a separate benchmark
for the electromagnetic solver of ASTRA alone. In fact, at
a short distance z � λp the beam has not yet appreciably
evolved so that Ez is the solution to the electrostatic prob-
lem of the initial charge distribution. Our analytical tech-
nique gives, at z = 0.1 m, an electric field on axis (r = 0)
Ez = 7235 V/m. We checked that one can recover roughly
the same value (with an accuracy of order 10−3) from the
well-known expression for the impedance per unit length
of drift:

Z =
4

kmr2
0

[

1− kmr0

γ
K1

(
kmr0

γ

)]

, (2)

where km = 2π/λm and K1 is the modified Bessel func-
tion of the second kind of order 1. In fact (I/IA)Zme =

1For this purpose we used the program ORIGIN.

7242 V/m, me being the electron mass in eV.
The maximum field on axis, multiplied by ez/c = 0.1 e

m/c is the maximum momentum modulation at z = 10 cm,
which may be compared with ASTRA results. Indeed, we
preferred to average Ez(z, r) at z = 10 cm over the trans-
verse beam distribution and compare with the analogous
averaged value of pz from ASTRA.

ASTRA SIMULATION

For our purposes we used a modified version of ASTRA
[5] using dynamic memory allocation, which allowed us to
set the number of macroparticles Nptc = 12 · 106 and we
used the customary Generator program to produce a uni-
form, cold beam with no modulation. No particular option
for noise reduction was used. A 5% modulation was then
subsequently introduced by rearranging the z positions of
the particles using a short code written ad hoc: this allowed
to overcome numerical noise problems in the z direction,
related with the Generator program, but not with ASTRA
itself. A solenoidal field Bz = 7 T has been used to de-
couple the longitudinal from the transverse dynamics. The
question obviously arises if the transverse particle motion
is truly negligible. Because of Bz , particles undergo small
circular trajectories in the transverse plane with Larmor
frequency ωL = qBz/(γme), q being the macroparticle
charge. The radius of these circles are related to the trans-
verse velocities of the particles which are altered though,
during the beam evolution, by the transverse space charge
force. A quick estimation shows that the particle-tracker
maximal integration step (which was set to 10 ps, corre-
sponding to about 3 mm) is too long to sample the Larmor
motion correctly. Yet, if the effect of Larmor motion is neg-
ligible at any point in the z direction, this fact is not of con-
cern. We checked that this is the case analyzing the trans-
verse rms angular spread as a function of the z-position,
and the maximal transverse momentum also as a function
of the z-position. We set the beam line length L = 7 m,
which is about one full plasma oscillation length, accord-
ing to our analytical estimations. A simple and conserva-
tive estimate shows that, at z = L = 7 m, every particle
moved, transversely, 6.5 · 10−5 m at most. This distance
should be compared with the smaller transverse dimension
typical of our system. ASTRA divides the beam in several
radial slices for the calculation of the space-charge interac-
tions. In our simulations we used 10 radial rings, with a
difference of a factor 2 in thickness between the outer and
the inner ring. Given the beam dimension r0 = 1.0 mm we
have that throughout all the evolution a particle can move,
at most, the dimension of the thinner ring. Moreover, one
should account for the fact that the transverse motion of
the particles introduce a small change in the longitudinal
projected motion of order (p⊥/pz)2; however this can be
estimated to be less than 10−10 or, on a length of 7 m, less
than 1 nm, which is completely negligible.

The previous discussion allows us to consider the trans-
verse particle motion negligible and to compare ASTRA
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Figure 3: Particle longitudinal momenta pz (in eV/c) as a
function of the position inside the beam (in m) at 3 m inside
the beam line. The solid line represents the momentum
averaged over r. Nbin = 400.

results with our analytical results.
In order to calculate the space-charge fields, ASTRA di-

vides the beam also in a number Nbin of longitudinal slices,
or bins: this is a critical parameter which should be studied
to obtain correct results. A right estimation of the fields
will occur only when a sufficiently large number of bins
is chosen: considering a modulation wavelength λm, an
intuitive guideline is that the number of bins per radiant
should be larger than unity. At the same time, the num-
ber of particles in each bin should be large. We ran several
ASTRA simulations with different longitudinal bins. The
maximum number of bins was Nbin = 800, for a 2.2 cm-
long bunch modulated at λm = 1 mm, which means that,
when Nptc = 12 ·106, about 103 particles can be expected,
roughly, to be present in each longitudinal slice for each
radial ring.

The ASTRA output file consists of several information,
among which the phase-space state of every particle. To
give an example, in Fig. 3 we plot the particles longitudinal
momentum pz as a function of the longitudinal coordinate
inside the bunch at 3 m down the beam line for Nbin = 400
2. We wrote a short code to get the average pz and position
(see the solid line in Fig. 3) of particles as a function of the
longitudinal coordinate from ASTRA output: this program
divides the bunch length (2.2 cm) in 500 parts, then the raw
data from the simulation is read by the code and the aver-
age momentum and position is calculated for each slice.
Results for the same example case in Fig. 3 are shown in
Fig. 4 and Fig. 5.

The data in Fig. 4 and Fig. 5 and their analogous for ev-
ery simulation run at any position down the beam line have
been subsequently fit. The particle momenta have been fit
with a tilted sinusoidal function A+B sin(2πz/λm)+Cz,
where the tilting is due to the fact that the tail of the bunch

2actually only one particle in 500 was selected for the plot, in order to
make the figure file more easily manageable.
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Figure 4: Average particle longitudinal momentum pz (in
eV/c) as a function of the position inside the beam (in m)
at 3 m inside the beam line. Nbin = 400.
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Figure 5: Particle density distribution normalized to Nptc

as a function of the position inside the beam (in m) at 3 m
inside the beam line. Nbin = 400.

is decelerated, while the head is accelerated by the space-
charge fields. The particle density distribution, instead, has
been fitted using A + B sin(2πz/λm + π/2), B/A giv-
ing the relative modulation level. Only the inner 10 peri-
ods have been used in the fits (nearer the bunch center, in
the longitudinal direction) since, as the bunch progresses
through the beam line, spurious edge effects get more and
more important.

For every ASTRA run (with a fixed number of longitudi-
nal slices Nbin) we could plot the current modulation level
and the absolute energy modulation and fit them, as before,
using a sinusoidal function.

The results in the case of Nbin = 400 are shown in Fig.
6 and Fig. 7, from which we have two estimation for the
plasma wavelength, λp = 7.32 m and λp = 7.44 m respec-
tively, which differ of about 1.6%.

As said before several ASTRA runs were performed
with different numbers of longitudinal slices Nbin. This
allowed us to plot the plasma wavelength as a function of
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Figure 6: Averaged relative current modulation level as a
function of the position in the beam line (in m) and sinu-
soidal fit. Nbin = 400.
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Figure 7: Average momentum modulation (in eV/c) as a
function of the position in the beam line (in m) and sinu-
soidal fit. Nbin = 400.

the number of bins per modulation wavelength and to com-
pare the results with analytical estimations. This result is
presented in Fig. 8. As one can see at least 20 bins per
wavelength are required in order to obtain acceptable re-
sults. Finally, to benchmark separately ASTRA electro-
magnetic solver, we plotted the electromagnetic fields es-
timated from the average momenta at z = 10 cm, as a
function number of bins per wavelength and we compared
these data with our analytical expectations. The result is
shown in Fig. 9. It can be seen that results in Fig. 8 and
Fig. 9 are in agreement: as the number of bins decreases,
the fields are underestimated and the plasma wavelength is
then badly overestimated.

CONCLUSIONS

We benchmarked ASTRA simulation by means of an
analytical, self-consistent three-dimensional model devel-
oped by us in [4]. Results show a very good agreement be-
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Figure 8: Benchmark of ASTRA - self-consistent problem:
comparison between λp (in m) as a function of Nbin/λm

calculated by ASTRA and with our analytical method.
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Figure 9: Benchmark of ASTRA - electromagnetic prob-
lem: comparison between the fields at 10 cm down the
beam line (in V/m) as a function of Nbin/λm calculated
by ASTRA and with our analytical method.

tween analysis and simulations, provided that critical pa-
rameters like the number of longitudinal bins for space-
charge calculations are chosen correctly.
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