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Abstract 
CSRtrack is a new code for the simulation of Coherent 
Synchrotron Radiation effects on the beam dynamics of 
linear accelerators. It incorporates the physics of our 
previous code, TraFiC4 [1], and adds new algorithms for 
the calculation of the CSR fields. A one-dimensional 
projected method allows quick estimates and a greens 
function method allows 3-D calculations about hundred 
times faster than with the �direct� method for large 
particle numbers. 

The tracking code is written in standard FORTRAN77 
and has its own parser for comfortable input of 
calculation parameters and geometry. Phase space input 
and the analysis of the traced particle distribution is done 
with MATLAB interface programs. 

INTRODUCTION 
In usual optics and tracking codes for accelerator 

development the bunch self fields due to synchrotron 
radiation and changes of the bunch shape are neglected. 
Therefore special CSR tracking codes have been 
developed (e.g., TraFiC4 [1], CSRtrack, R.Li�s code [2]) 
and existing codes have been expanded (e.g., Elegant 
[3,5], TREDI [4]). Essentially two types of approaches 
are presently used for the self-consistent calculation of 
particle distributions on curved trajectories. Both are 
available in CSRtrack.  
The 1-D approach uses a simplified model for the 
calculation of longitudinal forces [6]. It neglects 
transverse forces as well as transverse beam dimensions 
and assumes that the longitudinal distribution is 
unchanged at retarded times. A �renormalized� Coulomb 
term is used to extract the field singularity in the 1-D 
beam. 
The sub-bunch approach uses a set of 3-D charge 
distributions*, e.g., time-independent Gaussian, to 
approximate the source distribution. The physical model 
of the sub-bunch method is complete, but the resolution 
of phase space modelling is severely limited by the 
numerical effort for the field calculation of all point to 
point interactions. Even with parallel computing particle 
numbers above 103 are difficult to handle (CPU time on a 
cluster is many days).  
TraFiC4 and CSRtrack ease that problem by using a 
convolution method [8] to reduce the field calculation of 
3-D sources to 1-D integrations (for each interaction), 
gaining about a factor of ten in manageable particle 
numbers. 
Further improvement is possible with a pseudo Green�s 
function approach; it uses the discretized field of one 
reference sub-bunch to calculate all interactions. This 
method is implemented in CSRtrack and allows tracking 
calculations with 104 particles on one CPU in a few hours, 
up to 4⋅104 particles have been tracked on 20 CPUs.  

For the tracking of even bigger numbers of particles, the 
disadvantage that the effort scales quadratic with the 
number of particles could be avoided by calculating the 
electromagnetic fields on a mesh. With a combination of 
mesh field calculation and pseudo Green�s function 
method, >105 particles in less then one day (using 20 
CPUs in parallel) seem to be in reach. 

NUMERICAL ASPECTS OF DIFFERENT 
CSR FIELD CALCULATION METHODS 

In the following we discuss different algorithms and their 
relative computation time consumption, which are 
summarized in  Fig. 2. 
A word of warning: if the initial bunch density is 
modulated, for instance to study CSR induced instability, 
the computation time depends quadratically on the ratio 
of the bunch length to its fine structure � in any approach. 
We will discuss that further in a paper to come. 

One Dimensional Approach � Projected Method 
The particle distribution is projected to the reference 

trajectory and a smooth one dimensional charge density 
λ(s) is calculated by binning or filtering. The smoothing 
is crucial for the stability and accuracy of the simulation 
because the micro bunch instability is sensitive to high 
frequency components in the charge density. 
The longitudinal field E(λ) can be calculated by one 
dimensional integration 
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with the kernel function K(s0,u) that depends on the 
geometry of the trajectory. This integral is a convolution 
in time. It can be solved efficiently by FFT methods if E(λ) 
is required for a time interval.  
The longitudinal field is calculated on a mesh and 
interpolated to the projected particle positions. The 
particle tracking takes into account external fields and the 
longitudinal self field. The effort for the field calculation 
depends linearly on the number of particles. 

Sub-Bunch Approach 
The distribution of source particles is described by a set 

of sub-bunches with well defined shape. The individual 
trajectory of each sub-bunch has to be known in absolute 
coordinates back in time. This defines the 3-D source 
distribution ρ(r,t) so that potentials and electromagnetic 
fields can be calculated by an integration of retarded 
sources.  

A disadvantage of the sub-bunch approach is the large 
numerical effort. For M test particles and N source 
distributions (sub-bunches) M×N three-dimensional 
integrations have to be performed for every time step. 
___________________________________________  

* 2-D sub-bunches in R.Li�s code 
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Source Distributions and Test Particles 
For self consistent tracking the trajectory of each 

source is defined by the motion of an associated test 
particle. Therefore M=N+Mt test particles are needed, 
with Mt the number of additional particles that can be 
used for more detailed explorations e.g. of the transverse 
phase space. The effort for self consistent tracking is at 
least proportional to N2. Additional test particles need the 
computation of N×Mt interactions.  

If the bunch shape is weakly deformed due to self 
forces a perturbation approach can be used. The self 
forces to the test particles are calculated for unperturbed 
motion of source distributions and test particles. These 
forces are used in a second step to calculate the perturbed 
motion. The initial condition of test particles can be set as 
required (e.g. to investigate an individual slice) but at 
least some test particles should be used to verify the 
perturbation approach.  

3-D Sub-Bunches, Convolution Method 
Since the field of each source sub-bunch has to be 

calculated for every test position by a 3-D integration of 
retarded sources, the full field computations is quite time 
consuming. For spherical Gaussian sub-bunches this 
integration can be reduced to a 1-D integral [7]. 

The codes TraFiC4 and CSRtrack adopt a calculation 
method that was developed in [8]. A certain type of 3-D 
distribution can be represented by the convolution of a 
longitudinal 1-D profile λ(s,t) with a transverse 2-D 
density function η(x,y). 
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Fig 1: Schematic of the Convolution Method 

Then the 3-D electromagnetic fields can also calculated 
by a convolution of fields E(λ), B(λ) caused by the 1-D 
source with the 2-D density function. E(λ) and B(λ) are 
split into singular parts  E(λ,s) and B(λ,s), which are 
dominated by local effects, and non-singular parts E(λ,ns) 
and B(λ,ns). The asymptotic behaviour of the singular part 
is analytically known so that its convolution with certain 
transverse density functions can be computed efficiently. 

 As the non singular parts depend mainly on long range 
interactions, their transverse dependency is weak and the 
convolutions E(λ,ns)⊗ η, B(λ,ns)⊗ η can be approximated by 
E(λ,ns), B(λ,ns) for sufficiently small transverse dimensions 
( 3 2

0 λσR<< , with R0 the curvature radius and σλ the 
bunch length). Therefore the numerical effort Ec is 
determined by the 1-D integration for the non singular 
parts. The total effort for all source to test-point 
interactions is M×N×Ec. 

Pseudo Green�s Function Approach 
The fields E(0)(r,t0), B(0)(r,t0) of a reference sub-bunch 

(charge q0) that travels along a reference trajectory r0(t) 
are used to approximate the fields of other sub-bunches 
(charge qν, trajectory rν(t)). This approach neglects 
vertical forces. At the observation time t0 the trajectory of 
sub-bunch ν is approximated by 

( ))()()()( 0000 tttt rrRrr −⋅+≈ νν . 
This shift-rotation-transformation (with rotation 

operator R) is used to calculate 
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and B(ν)(r,t0) in the same way. The pseudo Green�s 
functions E(0)(r,t0), B(0)(r,t0) are calculated once for every 
time step on a 2-D mesh in the horizontal plane with Mg 
points: 
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The numerical effort for the calculation of all self 
forces is Mg×Ec+M×N×Ei,g with Ei,g the effort for the 
interpolation on the mesh. The approach is effective for 
N×M > Mg. Simulations with many particles (>104) are 
not limited by the effort for the field calculation (Mg×Ec) 
but by the effort for the interpolation (M×N×Ei,g).  

Meshed EM Fields 
If the density of particles is large compared to the fine 

structure of the particle distribution (and the self-fields) it 
is more efficient to calculate electromagnetic fields on a 
mesh with Mem points and to interpolate them to the test 
points. The numerical effort is Mem×N×Ec+M×Ei,em with 
Ei,em the effort for the interpolation on the field mesh. The 
total effort is not longer proportional to the squared num-
ber of particles (M×N with M ≥ N for self consistent 
tracking)! 

 Reasonable EM meshes need at least Mem > 104 points 
and therefore the method gets efficient for M, N > 104. 
The effort for such particle numbers is still too large 
(even with parallel computing) for routine investigations. 

 This is different if the meshed fields approach is 
combined with the  pseudo Green�s function approach: 
the total effort is Mg×Ec+Mem×N×Ei,g+ M×Ei,em. This 
method is still in preparation. 

  

Fig. 2: Numerical effort of different CSR field 
calculation methods vs. # of tracked particles 
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Iterative Tracking 
For tracking, self-forces have to be calculated for parti-

cles on phase space coordinates that depend on the un-
known forces. If the track step is sufficiently small the 
forces can be approximated for phase space positions cal-
culated without self contributions. To avoid the numerical 
effort for very many small steps iterative tracking with 
medium step size is used: estimated self forces are calcu-
lated for estimated particle positions and are used to im-
prove the position estimation. The iteration is repeated 
until an error criterion is fulfilled. 

The numerical integration of the equation of motion in 
CSRtrack uses sub-steps that are (much) smaller than the 
steps of the iterative force calculation. The forces at sub-
steps are linearly interpolated between the force at the 
start point of an iterative step and at its end point. The 
error due to this linear interpolation and due to too big 
iterative steps is not reduced by iterative tracking. 

 CSRtrack provides two possibilities to determine the 
size of iterative steps: by a recursive algorithm that is 
based on the bunch length and curvature radius of the 
trajectory and by external definition. Like in all self-field 
applying tracking codes, the result has to some extent to 
be interpreted and justified by the user (e.g. convergence 
tests or the inspection of the forces observed by some 
selected test particles).  

CSRtrack 1.0 

Particles Definition 
Position, momentum and charge of each particle of the 

distribution are defined in an absolute Cartesian coordi-
nate system with the horizontal plane as xy-plane. Parti-
cles with nonzero charge are source particles that create 
self-fields that affect the motion of test particles. In the 
present versions all particles have the source and test 
property.  

Lattice 
CSRtrack supports magnetic dipole- and multipole-

fields that are defined in Cartesian coordinates. The range 
of the fields of one element is limited by two field 
boundaries perpendicular to the horizontal plane. The 
dipole field between two field boundaries is constant and 
parallel to the vertical z-axis. Together with the dipoles a 
reference trajectory is defined that consists of arcs and 
lines.  

To take into account vertical edge focussing at the hard 
edges of dipoles the tracking algorithm applies discrete 
kicks proportional to the vertical offset. The magnetic 
multipole field is defined in a local coordinate system 
(longitudinal, horizontal, vertical) with its origin in the 
intersection point of the reference trajectory and the field 
boundary.  

The magnetic multipole field between field boundaries 
depends only on transverse coordinates. It is characterized 
by its strength, azimuthal order, transverse offset and 
skew angle. 

Shielding 
CSRtrack provides shielding as of now with parallel 

ideal conducting plates with constant distance to the 
beam. The user has to specify the maximum distance to 
the beam up to which mirror charges will be taken into 
account. 

 Parallel Computing 
CSRtrack is available as a parallel processing code 

using the MPI protocol with the MPICH package. Only 
the  sub-bunch methods are calculating parallel.  

# of 
particles 

calc. 
steps 

Method CPU Running 
time 

10000 ~200 Point to point 20x1GHz ~ 10 d 
10000 ~200 Greens funct.   1x1GHz ~0.5 d 
41000 ~200 Greens funct. 20x1GHz ~0.5 d 
Table 1: CPU time consumption of CSRtrack runs for 

TTF2 and XFEL magnet chicanes   

COMPARING RESULTS FOR DIFFERENT 
METHODS 

CSRtrack is well suited to explore the applicability of 
different CSR calculation methods. An example is a 
calculation for the European XFEL bunch compression 
system (see Fig. 4). 

The beam is tracked from the gun into the linac up to 
about the 100 MeV point with a space charge code 
(ASTRA). For the remaining injector linac up to the two 
magnetic chicanes for bunch compression a linac tracking 
code (elegant) is used. In the chicanes, where the beam 
dynamics is dominated by CSR effects, we need to 
employ CSRtrack.     

 
Fig. 4: Start-to-end calculation for the European XFEL 

 
In Fig. 5 the longitudinal phase space at the end of the 

beam line is shown; calculated with the 1-D and a 3-D 
method of CSRtrack. The RMS bunch length is about 
20 µm, the peak current 5 kA.  

The longitudinal tails of the initial distribution have 
been over-compressed back towards the center of the 
distribution. They have to be excluded from any 
meaningful evaluation of beam parameters vs. 
longitudinal bunch position such as transverse slice 
emittance or, as shown here, slice energy spread. In the 
graphs, these particles are color coded. 

The 1-D model underestimates the growth in slice 
energy spread in the center of the bunch due to CSR 
effects by a factor of 5-10.   

ASTRA
(space charge)

ELEGANT
(geom. Wakes, CSR) CSR - Track

1 2 3 4

ASTRA
(space charge)

ELEGANT
(geom. Wakes, CSR) CSR - Track

1 1 2 2 33 44
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Fig. 5: Longitudinal Phase 
Space at the end of the 
bunch compression system 
calculated with the 3-D 
Greens function method 
(left) and the projected 1-D 
method (right).  

The lower graphs show 
the difference in particle 
energies due to compression 
and the RMS of that value 
vs. longitudinal bunch 
position. 

 The particles in the 
energy distribution tails are 
shown in blue and green. 

 
 

POSTPROCESSING 
We use MATLAB tools on a XP PC to administrate 

and manipulate the data files and to run the tracking codes 
on both the local (XP) computer and a Linux PC cluster, 
in single CPU or parallel processing mode (see Fig. 6).  

Fig.6: MATLAB operating and post-processing GUIs 
 
 
 

 
 
 

Input and output phase space data files can be 
inspected, changed and plotted. 

User options are made invisible if they do not make 
sense; for example the option to display beam current (I) 
on the vertical axis disappears if something else than the 
longitudinal coordinate is chosen for the horizontal axis. 

File formats are checked and detected automatically to 
avoid mistakes. Saving data in files works via the 
standard XP �save as� window, also the file formats (e.g., 
elegant or ASTRA) can be chosen with the familiar pull-
down menu. 

FURTHER PLANS, CONCLUSION 
Soon a web page will be ready to download a CSRtrack 

executable and a user�s guide with input examples. The 
program has to be developed further to incorporate the 
mesh option described above. 
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