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Abstract

Quantum and free-electron lasers (FELs) are based on
distributed interactions between electromagnetic radiation
and gain media. In an amplifier configuration, a for-
ward wave is amplified while propagating in a polarized
medium. Formulating a coupled mode theory for excita-
tion of both forward and backward waves, we identify con-
ditions for phase matching, leading to efficient excitation of
backward wave without any mechanism of feedback or res-
onator assembly. The excitations of incident and reflected
waves are described by a set of coupled differential equa-
tions expressed in the frequency domain. The induced po-
larization is given in terms of an electronic susceptibility
tensor. In quantum lasers the interaction is described by
two first order differential equations, while in high-gain
free-electron lasers, the differential equations are of the
third order each. Analytical solutions of reflectance and
transmittance for both quantum lasers and FELs are pre-
sented. It is found that when the solutions become infinite,
the device operates as an oscillator, producing radiation at
the output with no field at its input, entirely without any
localized or distributed feedback.

INTRODUCTION

Conventional (quantum) lasers, microwave tubes and
free-electron lasers (FELs) are based on distributed inter-
actions between electromagnetic radiation and gain media.
When such devices are operating in an amplifier configu-
ration, a forward wave is amplified while propagating in a
polarized medium, in a stimulated emission process [1].
In an oscillator configuration a resonator [2]-[4] or a dis-
tributed feedback [5] are employed to circulate the radia-
tion, which is excited and amplified by the gain medium. If
the single-pass gain is higher than the total losses, the radia-
tion intensity inside the cavity increases and becomes more
coherent. After several round trips, the radiation is built up
until arriving at the nonlinear regime and saturation.

In this paper we suggest a mechanism of generation
of laser oscillations, without any feedback means. It is
shown that under conditions of phase-matching, both for-
ward and backward waves can be excited in a distributed

Figure 1: Schematic illustration of incident and reflected
waves in a distributed gain medium.

gain medium as illustrated schematically in Figure 1. The
excitation of incident and reflected waves is described by
a set of two differential equations coupled by the induced
polarization of the gain media. The coupling coefficient is
given in terms of the electronic susceptibility tensor.

Two cases are discussed: In quantum lasers, which are
characterized by isotropic, homogeneous gain media, the
interaction is described by two first order differential equa-
tions. In high-gain free-electron lasers, where the suscep-
tibility is space dependent, the set includes two differential
equations of the third order each. The coupled equations
sets are solved analytically for both cases. Oscillation con-
ditions are identified from the derived reflectance and trans-
mittance coefficients.

EXCITATION OF FORWARD AND
BACKWARD MODES

The total electromagnetic field is given by the time har-
monic wave vector:

E(r, t) = �
{
Ẽ(r)e−jωt

}
(1)

where Ẽ(r) is the phasor of the wave oscillating at an an-
gular frequency ω. The vector r stands for the (x, y, z) co-
ordinates, where (x, y) are the transverse coordinates and
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z is the axis of propagation. In the case of excitation of
forward and backward modes, the phasor can be written as
the sum [6]:

Ẽ(r) =
[
C+(z) e+jkzz + C−(z) e−jkzz

] Ẽ(x, y) (2)

C+(z) and C−(z) are scalar amplitudes of forward and
backward modes respectively, with profile Ẽ(x, y) and ax-
ial wavenumber kz . The evolution of the amplitudes of the
excited modes is described by a set of two coupled differ-
ential equations:

d

dz
C±(z) = ∓ 1

2N e∓jkzz

∫ ∫
J̃(r) · Ẽ∗(x, y) dx dy (3)

The normalization of the mode amplitudes is made via the
complex Poynting vector power:

N =
∫ ∫ [

Ẽ⊥(x, y)× H̃∗⊥(x, y)
]
· ẑ dx dy (4)

The total power carried by the forward and backward
(propagating) modes is:

P (z) =
1
2
�

∫ ∫ [
Ẽ(r)× H̃∗(r)

]
· ẑ dx dy

=
1
2

[|C+(z)|2 − |C−(z)|2] · � {N} (5)

When the interaction takes place in a polarized gain
medium, the driving current density J̃(r) is given in terms
of the induced polarization (dipole moment per unit vol-
ume) P̃(r). In the time domain, the current density is the
time derivative of the induced polarization. Thus, the pha-
sor representation of the driving current density is given
by:

J̃(r) = −jωP̃(r) = −jωε0 χ(r, ω) · Ẽ(r) (6)

where χ(r, ω) is the electronic susceptibility tensor at the
frequency ω (in a homogeneous isotropic medium it is a
scalar). Using (6) in (3) results in:

d

dz
C±(z) =

±j
ωε0

2N e∓jkzz

∫ ∫
Ẽ(r) · χ(r, ω) · Ẽ∗(x, y) dx dy (7)

Substitution of the field expansion (2) in the excitation
equations (7), the mode amplitudes C±(z) are described
by a set of two coupled differential equations, that can be
presented in a matrix form:

d

dz

[
C+(z)
C−(z)

]
=

[
+κ(z) +κ(z)e−j2kzz

−κ(z)e+j2kzz −κ(z)

] [
C+(z)
C−(z)

]
(8)

The coupling parameter:

κ(z, ω) ≡
j
ωε0

2N
∫ ∫

Ẽ(x, y) · χ(r, ω) · Ẽ∗(x, y) dx dy (9)

is in general a complex, space-frequency dependent quan-
tity.

QUANTUM LASER

We relate first to gain media, where the electronic sus-
ceptibility does not change along the axis of propagation z.
This situation occurs in quantum lasers, where the atomic
susceptibility of the gain medium is uniform [1]. In that
case the coupling parameter is not yet space (z) dependent
and can be presented in the form κ(ω) = γ(ω) + jβ(ω),
where γ(ω) is the field gain factor. Consequently, the set
(8) can be written as two coupled first order linear differen-
tial equations:

d

dz

[
C+(z)
C−(z)

]
=

[
+κ +κe−j2kzz

−κe+j2kzz −κ

] [
C+(z)
C−(z)

]
(10)

Analytical solution of the coupled set (10) for a given for-
ward mode amplitude C+(0) at the input z = 0, while
the backward mode amplitude at the exit of the interaction
region (z = L) is C−(L) = 0, leads to the solution of
incident and reflected wave amplitudes:

C+(z)
C+(0)

=

(κ + jkz) sinh [S(L− z)]− S cosh [S(L− z)]
(κ + jkz) sinh(SL)− S cosh(SL)

e−jkzz

C−(z)
C+(0)

=
−κ sinh [S(L− z)]

(κ + jkz) sinh(SL)− S cosh(SL)
e+jkzz

(11)

where S ≡ √
(κ + jkz)2 − κ2 is a complex parameter.

The evolution of incident and reflected wave amplitudes
along the gain medium are shown in Fig. 2. It is assumed
that the interaction takes place in the vicinity of the reso-
nance frequency, where κ(ω0) is real.
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Figure 2: The evolution of (a) incident and (b) reflected
wave amplitudes along the gain medium.
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The transmission gain is defined by:

C+(L)
C+(0)

=

−SL

(κ + jkz)L sinh(SL)− SL cosh(SL)
e−jkzL (12)

Respectively, the reflection gain is:

C−(0)
C+(0)

=
−κL sinh(SL)

(κ + jkz)L sinh(SL)− SL cosh(SL)
(13)

Contour plots of the transmission and reflection power gain
in the (kzL, κL) plane are shown in Figure 3. An infinite
gain singularities are inspected when the denominator of
the gain dispersion relations given in (12) and (13) van-
ishes. This happens when:

tanh(SL) =
SL

κL + jkzL
(14)

In that case the forward and backward modes will be ex-
cited in the absence of an input signal, resulting in excita-
tion and buildup of oscillations. Equation (14) expresses
the oscillation condition, determining the threshold gain
factor required for excitation of oscillations and their re-
sultant frequencies at steady-state.

HIGH GAIN FREE-ELECTRON LASER

In free-electron lasers, the accelerated electrons serve as
a gain medium and the interaction with the electromagnetic
field takes place along the e-beam axis. Coupled mode
theory for multi transverse mode excitation was developed
previously, deriving an expression for the gain-dispersion
relation in the linear regime of the FEL operation [7].
Set of equations (3) for the different modes were solved
together with the small-signal moment equations describ-
ing the evolution in the driving current modulation. In the
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Figure 3: (a) Transmission and (b) reflection contours in
the (kzL, κL) plane for atomic laser.

high gain limit the amplitudes of the forward and backward
waves is described by two coupled third order linear differ-
ential equations:

d3

dz3

[
C+(z)
C−(z)

]
=

[
+κ +κe−j2kzz

−κe+j2kzz −κ

] [
C+(z)
C−(z)

]
(15)

where the coupling parameter:

κ = j
ε0ζq

4N
ω2

p

v2
z0

(kz + kw)

×
∫ ∫

f(x, y) Ẽpm(x, y) Ṽw
⊥ · Ẽ∗⊥(x, y) dx dy (16)

where Ẽpm
q (x, y) is the pondermotive field, f(x, y) is the

transverse profile of the e-beam and ωp is the plasma fre-
quency of a relativistic beam with average axial electron
velocity vz0.

We solved the coupled set (15) analytically. The ampli-
tude of the forward wave can be written as:

C+(z) = e−jkzz
6∑

i=1

cie
λikzz (17)

and the backward wave’s amplitude is:

C−(z) = e+jkzz
6∑

i=1

(j − λi)3

(j + λi)3
cie

λikzz (18)

where the six eigenvalues λi appear in the above solutions
are found from a characteristic equation of the sixth order.
Fortunately it can be written in a third order form:

γ3 + 3γ2 + 3γ(1− jw) + 1 + jw = 0 (19)

in which γ = λ2 and w = 2κ
k3

z
, enabling analytical solu-

tion of λi. The properties of the eigenvalues λi are dis-
cussed in the Appendix. The constants ci are determined
by the boundary conditions. Assuming that there is no pre-
bunching in the electron beam, an initial amplitude C+(0)
is assumed for the forward mode at z = 0 and all the other
boundary conditions are C′+(0) = C ′′+(0) = C−(0) =
C ′−(0) = C ′′−(0) = 0 (here ′ denotes first order derivative
d
dz ). The analytical results were verified using a numerical
algorithm solving the boundary condition problem. Fig-
ure 4 presents contour plots of the transmission and reflec-
tion power gain in the (kzL, κL3) plane. Oscillations are
expected where an infinite gain is obtained.
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Figure 4: (a) Transmission and (b) reflection contours in
the (kzL, κL3) plane for free-electron laser.
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APPENDIX

The six eigenvalues calculated from equation (19) come
in positive-negative pairs λ = ±√γ. Taking complex con-
jugate of equation (19) (assuming that w is real):

γ∗3 + 3γ∗2 + 3γ∗(1 + jw) + 1− jw = 0 (20)

reveals that the solutions satisfy the relation:

γ∗m(−w) = γn(w) (21)

in which m,n are the solution indices. However, since we
have a total of three roots to equation (19) , at least one of
the roots, say γ1, satisfies the relation:

γ∗1 (−w) = γ1(w) (22)

that is its real part is even with respect to w and its imagi-
nary part is odd.

Equation (19) can be readily solved and the solutions are:

γ1 = −1 + ba− a2

b

γ2 =
1
2
[−γ1(1 +

√
3j)− 3−

√
3j + 2

√
3jab]

γ3 =
1
2
[−γ1(1−

√
3j)− 3 +

√
3j − 2

√
3jab](23)

where:

a = (−jw)
1
3 b = (2 +

√
4− jw)

1
3 (24)

We see that:
γ3(w) = γ∗2(−w) (25)

Hence one can deduce the behavior of the roots for negative
w values from their behavior for positive values.

In the case w → 0 we obtain limw→0 γi = −1 for
i ∈ [1, 2, 3]. This is obviously a degenerate case in which
the solution is not of an exponential type. Inserting the con-
dition w → 0 into equation (15) one is left with the trivial

equation d3

dz3

[
C+(z)
C−(z)

]
= 0 with the solution:

C+(z) =
1
2
z2c

(2)
+ + zc

(1)
+ + c

(0)
+

C−(z) =
1
2
z2c

(2)
− + zc

(1)
− + c

(0)
− (26)

In the opposite limit in which w → ∞ we obtain the fol-
lowing results:

lim
w→∞ γ1 =

1
3

lim
w→∞ γ2 =

√
3e

5
4 πjw

1
2

lim
w→∞ γ3 =

√
3e

1
4 πjw

1
2 (27)

Since non of those are negative real numbers this means
that we have three growing exponents and three decaying
exponents in the case of large w those are:

lim
w→∞λ1 =

1√
3

lim
w→∞λ2 = − 1√

3

lim
w→∞λ3

∼= 3
1
4 (−0.383 + 0.924j)w

1
4

lim
w→∞λ4

∼= 3
1
4 (0.383− 0.924j)w

1
4

lim
w→∞λ5

∼= 3
1
4 (0.924 + 0.383j)w

1
4

lim
w→∞λ6

∼= 3
1
4 (−0.924− 0.383j)w

1
4 (28)

For large w, λ5 is clearly the most dominant exponent. Al-
though λ1 & λ2 asymptotically approach a finite number,
the other eigenvalues continue to grow without limit.
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