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Introduction

» FEL instability in the undulator requires a very bright
electron beam (small emittance and small energy spread)

» This beam interacting with self-fields in the accelerator
can be sensitive to other “undesirable’ instabilities

» Bunch compressors designed to increase the peak current
give rise to a microbunching instability that may degrade
the beam quality significantly

» In LCLS, we control the local energy spread to damp the
microbunching instability without degrading the x-ray laser
performance



How cold is the photoinjector beam?
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Too small to be useful in FEL (no effect on FEL gain when <10-4)



Microbunching instability

* Initial density modulation induces energy modulation
through longitudinal impedance Z(k), converted to more
density modulation by a compressor
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LCLS accelerator systems
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« Two bunch compressors to control jitters and linac wakefield

* Impedance sources: longitudinal space charge (LSC),
coherent synchrotron radiation (CSR) and linac wakefields

« Landau damping by increasing energy spread (~10 times) with
a SC wiggler before BC2 to suppress CSR microbunching
or a laser heater for LSC instability (suggested by Saldin et al.)



LSC in LCLS

« LSC impedance modeled by ELEGANT after injector,
reasonable agreement W|th ASTRA
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Growth of slice energy spread
* High BC1 gain = significant energy modulation in Linac-2
=>» temporally smearing in BC2 to become effective slice
energy spread (= SC wiggler too late)

Final long. phase space at 14 GeV for
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~Need ~0.1% initial density modulation at injector end
or suppress BC1 gain effectively



LCLS Laser Heater
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Injector at 135 MeV

 Laser-electron interaction in an undulator induces rapid

energy modulation (at 800 nm), to be used as effective
energy spread before BC1 (3 keV=>» 40 keV rms)

Inside a weak chicane for easy laser access, time-
coordinate smearing (Emittance growth is negligible)



hicane

Matched laser spot size

100

Large laser spot size
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Gain suppression depends on laser spot size

 Large laser spot generates “double-horn” energy distribution,
ineffective at suppressing short wavelength microbunching

 Laser spot matched to e-beam size generates Gaussian-like
energy distribution for effective Landau damping

energy distribution (rms 40 keV) BC 1 gain with heater
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S2E Microbunching simulation

* Injector space charge dynamics is modeled by ASTRA, Linac
by ELEGANT with LSC/CSR/machine impedances

Example: final long. phase space at 14 GeV for initial 8% uv
laser intensity modulation at A=150 um
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Summary

» Microbunching instability driven by LSC, CSR and
machine impedance is a serious concern for x-ray FEL

» Photoinjector beam is too “cold” in energy spread,
“heating” within FEL tolerance (~10X) to control the
instability

» A laser heater with a laser spot matched to the
transverse e-beam size is most effective in
suppressing microbunching and is designed for LCLS

» It gives flexible control of slice energy spread to
manipulate FEL radiation





