First lasing at the ELBE mid IR FEL

Peter Michel, Forschungszentrum Rossendorf, PF 510119, 01314 Dresden, Germany p.michel@fz-rossendorf.de

- ELBE facility overview
- ELBE FEL
- First lasing and results
- What's next ?

Radiation source ELBE

superconducting Electron Linac of high Brilliance and low Emittance

Radiation Source ELBE / Dr. Peter Michel

The radiation source ELBE

- Nuclear physics experiments are running since January 2002
- Channeling radiation since September 2003
- FEL 1 first lasing 7.05.2004; 3 W @ 19.8 μ m (FEL 2 in the design phase)
- Neutron and Positrons planned for 2005

ELBE FEL layout

Radiation Source ELBE / Dr. Peter Michel

Electron beam diagnostics

I. Emittance:

Electron beam diagnostics (2)

III. BPMs:

Radiation Source ELBE / Dr. Peter Michel

Main parameters of the ELBE FELs

FEL2(U120)

planed for 2006

FEL1(U27) in operation

Undulator period Number of periods Undulator parameter Undulator type	27.3 mm 2 * 34 0.3 - 0.8 hybrid NdFeB	120 mm 40 < 2.5 electromagnetic
Resonator length	11.53 m	11.53 m
Rayleigh length	1 m	2.5 m
Outcoupling holes	1.5 / 2.0 / 3.0 / 4.5 mm	6.0 mm
Mirror R(curvature)	5940 mm (h+v)	7689 mm, 6077 mm (h) 4700 (v) mm
Mirror diameter	70 mm	145 mm (h) 270 mm (v)
Mirror material	Au / Cu	Cu
Waveguide	no	partial (10 \times 7460 mm)
Wavelength	3-22 μm	10 - 150 μm
Max. power (out)	60 W	35 W
Max. pulse energy	4.5 μJ	2.5 μJ

Radiation Source ELBE / Dr. Peter Michel

- 1. Set electron beam transport
- 2. Electron beam parameters measured ΔE and σ_z vs. phase cavity #1 and cavity #2
- 3. Observe the spontaneous radiation downstream of the undulator (Friday 30th April)
- 4. Complete the optical cavity (Monday 3rd May)
- Observe the spontaneous radiation coupled out of the optical cavity (Monday 3rd May)
- 6. Set optical cavity length with the help of Ti:Sa
- 7. First lasing

(Thursday 6rd May) (Friday 7th May)

8. Open champagne and leave the FEL running alone as long as the champagne is not finished!

First spontaneous radiation downstream of the undulator

First spontaneous radiation coupled out of the optical resonator

from 3 mV to 15 mV in 5 min.

Radiation Source ELBE / Dr. Peter Michel

from 15 mV to 200 mV in 4 hours

Radiation Source ELBE / Dr. Peter Michel

from 200 mV/div to 500 mV/div another 5 min.

Radiation Source ELBE / Dr. Peter Michel

Wowh !!!!

Radiation Source ELBE / Dr. Peter Michel

Yippee !!!!!!

Electron beam energy spectrum

Radiation Source ELBE / Dr. Peter Michel

Detuning curve

Saturation power and gain vs. optical cavity length

Radiation Source ELBE / Dr. Peter Michel

Optical cavity losses

Calculations: R.Wünsch

Radiation Source ELBE / Dr. Peter Michel

Gain vs bunch charge

Radiation Source ELBE / Dr. Peter Michel

ΔE and σ_z vs. cavity #2 phase

Radiation Source ELBE / Dr. Peter Michel

European FEL Userlabs start 2005 - FELBE

"Integrating activity on synchrotron and free electron laser science"

High Magnetic Field Lab & ELBE

Combination of ELBE FEL (3 ... 150 $\mu\text{m})$ and High Magnetic Field Lab IR spectrosokopie at high magnetic fields

 $2\mu_{B}\cdot$ 100 T » h·c / 100 μm

Acknowledgment

F. Gabriel A. Büchner F. Herbrand R. Jaintsch K. Leege D. Pröhl R. Schlenk J. Voigtländer A. Wolf B. Wustmann P. Michel P. Evtushenko M. Freitag U. Lehnert J. Teichert A. Schamlott C. Schneider R. Schurig

- <u>E. Grosse</u>
- P. Gippner B. Rimarzig
- W. Seidel
- D. Wohlfarth
- U. Wolf
- R. Wünsch

<u>M.Helm</u> T. Dekorsy M. Krenz

We had great support from all over the world: HEPL Stanford, JLAB, DESY, SDALINAC, FELIX ... (Todd Smith, Lex van de Meer, Kevin Jordan ...)

ID: 1306 - THPOS67 ELBE FEL - First Lasing

Thank you for your attention

