

The European X-Ray Free Electron Laser Project

Andreas S. Schwarz DESY for the XFEL Project Group

- 1. Basic Design Considerations
- 2. Technical Layout
- 3. Parameter Flexibility
- 4. Present Status of the Project
- 5. Summary

1. Basic Design Considerations

X-FEL Laboratory - Physics Opportunities

Probe the dynamic state of matter

- with atomic resolution in space and time
- studies of non-equilibrium states
- studies of very fast transitions between different states of matter

Specifically:

- atomic, molecular and cluster phenomena, plasma physics
- non-linear processes and quantum optics
- condensed matter physics and materials science
- ultra-fast chemistry and life-sciences

And:

• this machine will present a quantum jump: prepare for the unexpected!

Basic Design Considerations ff.

Basic Principle: Extend the principle of Linear Accelerator based Self Amplification of Spontaneous Emission (SASE) Free Electron Lasers (FELs) into the hard X-Ray regime (~0.85 - 60 Å)

- Modulation of the electron charge density with the (synchrotron radiation) field
 ⇒ 'micro-bunching'
- more and more electrons radiate in phase
 increasingly coherent superposition
 of the radiation
- saturation: electron beam completely bunched

Need excellent electron beam quality:

- low emittance
- low energy spread
- extremely high charge density

Note: to get down to 1 Å, the undulator has to be VERY long!

Basic Design Considerations ff.

Spectral Characteristics of Radiation

Spectral distribution of angle integrated radiation

Radiation properties:

- narrow bandwidth
- fully polarized
- transversely coherent

Gain factors: (compared to 3rd generation sources)

- peak brilliance
- 10⁹ (SASE) 10⁴ spontaneous
- average brilliance
- coherence (# photons/mode)
- 10⁴ SASE 10⁹ SASE

X-Ray Free-Electron Laser

Basic Design Considerations ff. X

X-Ray Free-Electron Laser

Pulsed electron beam: pulsed photon source!

Large flexibility with superconducting Linac Technology!

- Single bunches, few bunches, long bunch trains
- Bunch trains with variable number of bunches (1 to 3000)
- Bunch trains with varying bunch spacing (200 nsec to ???)

The details will and can be determined to a large degree by the User Community!

X-Ray Free-Electron Laser

2. Technical Layout

Technical Layout

Basic Assumptions

- The XFEL is a multi-user facility
- The electron beam is distributed into several e- beamlines
 - Use electron beam for several FELs and spontaneous radiators
 - Parallel operation of as many experiments as possible
 - Minimize down-time of beam lines/experiments: ideally use every pulse
 - Provide R&D capability parallel to user operation
- The XFEL should continuously cover $200eV \rightarrow 12.4keV (64Å \rightarrow 1Å)$
- the emphasis is on the hard X-rays
- 1 Å must be reached safely with conservative assumptions on beam parameters
- The XFEL is based on proven technologies (TTF, VUV-FEL, SppS, ...)

Technical Layout ff.

Principle Layout Schematics

Linac Layout

A.S. Schwarz

XFEL X-Ray Free-Electron Laser

The XFEL Injector

The goal for the XFEL:					
charge	1nC	At TTE and PITZ (DESV) these parameters			
ε _{x,y}	1.4 <i>μ</i> m	AT ITT und FITZ (DL37) These pur unterers			
σz	~ 25 µm (80 fs)	are amost reached			
$\sigma_{E,uncorr}$	< 2.5 MeV				

A.S. Schwarz

XFEL X-Ray Free-Electron Laser

The Accelerating Structures

Main linac	
Energy gain	0.5 → 20 GeV
# installed modules	116
# active modules	104
acc gradient	22.9 MV/m
# installed klystrons	29
Bunch spacing	200 ns
beam current	5 mA
power→beam p. klystron	3.8 MW
incl. 10% + 15% overhead	4.8 MW
matched Q _{ext}	4.6·10 ⁶
RF pulse	1.37 ms
Beam pulse	0.65 ms
Rep. rate	10 Hz
Av. Beam power *	650 kW
Total AC power	≈ 9 MW

Bunch trains

- Typical rate: 10 Hz
- 1-3000 bunches per train
- each bunch can generate max. brilliance

* Power limitation to ~300kW per beamline \rightarrow solid beam dump possible

X-Ray Free-Electron Laser

e⁻ Beam Distribution

X-Ray Free-Electron Laser

- 10 Hz macro-pulse repetition rate ("bunch trains")
- Distribution of e- bunches on different time scales possible
 - macro pulse to macro pulse
 - bunch to bunch
- Different bunch patterns can be created at source

Macro-pulse:

- 0.65 ms long
- ~ ≈ 3000 bunches with ≥ 200 ns spacing

DC Magnet	Slow switch train to train	High Q Resonator	Programmable fast kicker for individual <mark>bunches</mark>
One beamline only	Macro cycle reduced by number of beamlines	Same bunch pattern for every beamline,	Most flexible
Commissioning option	TDR option	full duty cycle	

Alternative approach: photon distribution with phase shifter (Saldin, Schneidmiller, Yurkov)

The European X-Ray Free Electron Laser Project

A.S. Schwarz

Generic Beam Line Layout

The European X-Ray Free Electron Laser Project

XFFL

X-Ray Free-Electron Laser

A.S. Schwarz

September 3rd, 2004

Undulator concept

- 3 undulators cover the wavelength range 0.1-1.6 nm continuously at fixed electron energy, XUV covered by 4th undulator.
- All undulators are planar, variable-gap devices with an identical mechanical design.
- Each undulator provides three different modes of operation using the same undulator structure (conventional SASE, high-power, frequency doubling).
- Use of dispersion sections to control amplification process.

FEL parameters for 17.5 GeV

	λ (nm)	λ _u (mm)	L _W (m)	P _{peak} (GW)	Photons/ pulse
SASE1	0.1-0.15	39	150	10	5·10 ¹¹
SASE2	0.1-0.4	47.9	150	20	2·10 ¹²
SASE3	0.4-1.6	64.8	110	20	4·10 ¹²
SASE4	1.6-6.4	110	80	100	2.1014

TTF1 bunch at 15 GeV would reach saturation at 1.6 nm !

The European X-Ray Free Electron Laser Project

XFFI

X-Ray Free-Electron Laser

September 3rd, 2004

XFEL: Undulator Systems

Undulators:

- Segmentation: 5m Undulator, 1.1m Intersection
- Precision gap tunable ($\pm 1 \mu m$)
- Individual opening possible (tuning, diagnostics)
- High dynamical, high precision 4-axis drive system

Principles tested successfully at TTF1

Intersection System:

- Phase shifter
- Quadrupole
- BPM
- Correctors
- 1 photon diagnostic station

VUV FEL: Phase 1

Undulator: λ_{u} = 27.3 mm Gap = 12 mm B_{peak} = 0.46 T K = 1.17 L = 3 × 4.5 m

Experimental Area

- Multi-User facility
- Parallel operation of as many experiments as possible

Generic Experiment Layout

XFFL

X-Ray Free-Electron Laser

3. Parameter Flexibility

Parameter Flexibility

(a) Choice of Beam Energy

Conservative assumptions for

- slice energy spread $s_{\rm F}$ = 2.5 MeV
- slice emittance $e_n = 1.4 \text{ mm mrad}$
- undulator gap g = 10 mm

Advantage of High Beam Energy

- Safely reach 1 Å to get started with user experiments early
- Allows future upgrades to shorter wavelengths below 0.5 Å
- Advantages compared with lower e-beam energy
 - Higher power (~100 GW vs. ~10 GW)
 - Much better transverse coherence
 - Allows to combine very powerful XUV and X-ray pulses

Parameter Flexibility ff.

(b) Repetition Rate

Maximum repetition rate and beam pulse length vs. the accelerating gradient of the s.c. cavities

Parameter Flexibility ff.

(c) Time Structure

Generation of bunch train patterns:

- At the source → varying transient effects in the entire accelerator (handled e.g. by the LLRF system)
- At the beam delivery/distribution system → more challenging kicker devices

Note: each bunch can lase to saturation!

The European X-Ray Free Electron Laser Project

4. Present Status of the Project

TESLA

The Superconducting Electron-Positron Linear Collider with an Integrated X-Ray Laser Laboratory

Technical Design Report

History: TDR 3/2001

October 2003

February 2003:Postponement of Linear Collider Decision by German GovernmentOctober 2003:New Proposed Site: DESY to Schenefeld

Linac: 2100m Photons: 1100m

E_{beam} ≤ 25GeV 2 Stages

The European X-Ray Free Electron Laser Project

XFEL X-Ray Free-Electron Laser

Proposed Site near DESY - Hamburg

The European X-Ray Free Electron Laser Project

A.S. Schwarz

September 3rd, 2004

- Background "Project Approval Procedure"
 - It is prescribed by German law for large building projects that affect an appreciable part of the public domain
 - It is mandatory to get approval for construction and operation
 - It is helpful: 'bundling' of many legal approval processes
- Process
 - Need a law that covers the construction and operation of the XFEL
 - "Staatsvertrag" between Hamburg and Schleswig-Holstein to be generated
 - It is mediated by a public authority
 - We have to provide a relatively detailed "macroscopic" layout of the facility (project approval documents)

Project Approval Procedure ff.

Time Table and Status

10/2003	-	Staatsvertrag initiated
02/2004	-	Environmental Impact Study initiated
03/2004	-	"Scoping Date"
		possibly affected public parties get the chance to request further/special expert reports regarding environmental issues
06/2004	-	Drilling along the planned construction site to study ground
		properties
07/2004	-	Staatsvertrag signed by governments of Schleswig-Holstein and
		Hamburg
9/2004	-	28th of September: Staatsvertrag ratified ! (becomes a law)
11/2004	-	Editorial Deadline for project approval documents
03/2005	-	Hand in documents plus expert expertises to public authorities
01/2006	-	Project approved?
in 2006	-	Start construction?

XFEL

X-Ray Free-Electron Laser

XFEL (b) Approaching the European XFEL Facility

August 2003:

Letters of invitation by German Minister of Science and Technology to EU Colleagues: Establishment of a Steering Committee for the Project at high ministerial level

X-Ray Free-Electron Laser

A.S. Schwarz

AFI meeting May 24/25th, 2004

European XFEL Facility

Elements of XFEL organizational scheme

preparatory phase	construction & commissioning				operation	
2004	2006	2008	2010	2012	2014	
← MoU	convention/contract					

convention/contract

Memorandum of Understanding (MoU)

"Based on these developments (TESLA TDR + Supplement), the signatories of this Memorandum of Understanding want to enter the preparatory phase of a European XFEL Facility

... by signing this Memorandum of Understanding the Parties express their interest in participating in the construction and operation of the European XFEL Facility."

... Signing of MoUs by core member countries scheduled for September 28th, 2004...

Purpose: Technical Review of the Design; Consolidation; Transfer to new site

 \Rightarrow a total of 37 work packages have been created (weekly meetings)

- Overall design & parameters, beam physics
- Major technical components
- Sub-systems
- Other issues (e.g. Plan Approval Procedure)

All work packages have one DESY representative at the moment. This should/will change!

Leadership / participation from other labs/institutions/individuals is highly encouraged!

X-Ray Free-Electron Laser

Work Packages

http://xfel.desy.de

The European X-Ray Free Electron Laser Project

A.S. Schwarz

5. Summary

- The European X-Ray Free Electron Laser Laboratory will provide unprecedented opportunities for basic research with photons in the 1Å regime
- The baseline design offers a conservative approach to reach 1Å wavelength
- Much will be learned from current R&D and user operations at the SppS, VUV-FEL and LCLS
- The baseline design is flexible and allows the incorporation of new developments in the photon generation scheme
- The preparatory work for the XFEL is well underway
 - at DESY (XFEL Project Group, Project Approval Procedure)
 - on the European Level (EU Working Groups, Workshops, MoU)
- Timetable:
 - signing of the Memorandum of Understanding by core members: 2004
 - start digging in 2006/2007
 - first photons in 2012

There exists ample opportunities to join in defining the final design of the project!