Zwart, T.
(Townsend Zwart)

TUAOS03 Large-Scale Timing Distribution and RF-Synchronization for FEL Facilities
Jung-Won Kim, Fatih Oemer Ilday, Franz Kaertner, Oliver Muecke, Michael Perrott (MIT, Cambridge, Massachusetts), William S Graves, David Moncton, Townsend Zwart (MIT/BLAC, Middleton, Massachusetts)

For future advances in accelerator physics in general and seeding of FELs in particular, precise synchronization between seed radiation, low-level RF-systems and photo-injector laser is required. Typical synchronization methods based on direct photodetection are limited by the detector nonlinearities, which lead to amplitude-to-phase conversion and introduce timing jitter. A new synchronization scheme for extraction of low jitter RF-signals from optical pulse trains distributed by mode-locked lasers is proposed. It is robust against photodetector nonlinearities. The scheme is based on a transfer of timing information into an intensity imbalance between the two output beams from a Sagnac-loop interferometer. As a first experimental demonstration, sub-100 fs timing jitter between the extracted 2 GHz RF-signal and the 100 MHz optical pulse train from a mode-locked Ti:sapphire laser is demonstrated. Numerical simulations show that scaling to sub-femtosecond precision is possible. Together with mode-locked fiber lasers and timing stabilized fiber-link, this scheme can be applied for the large-scale precise timing distribution and synchronization of free-electron laser facilities.

TUPOS57 Optimal RF Systems for Lightly Loaded Superconducting Structures
Townsend Zwart, Dan Cheever, William S Graves, D. Wang, Abbi Zolfaghari (MIT/BLAC, Middleton, Massachusetts)

Recent developments in the field of RF accelerators have created a demand for power amplifiers that can support very high accelerating gradients, 15-25 MV/m, in superconducting structures with extremely low losses. Free electron lasers (FEL’s) with modest beam current, I< 10 uA, or based on energy recovery linacs (ERL’s) may have intrinsic power demands of less than 1 kW/m. We present the design of an amplifier and external tuner system that will efficiently meet this requirement. The RF amplifier, an Inductive Output Tube (IOT), offers high AC/RF efficiency, flexible power output and switching capability without the need for external modulation. The tuner circuit makes use of low loss ferrite phase shifters to create a moderate quality standing wave (Q~100-1000) between the amplifier and the superconducting cavity. An alternative design based on a shorter cavity structure and employing solid state amplifiers is also presented. The expected performance characteristics of both systems are described.