Dejus, R.J.
(Roger J. Dejus)

TUBOS04 LCLS Undulator Design Development
Isaac Vasserman, Roger J. Dejus, Patric Den Hartog, Elizabeth Moog, Shigemi Sasaki, Emil Trakhtenberg, Marion White (ANL/APS, Argonne, Illinois)

The fractional variation in deflection parameter K between segments of the 130.4-m-long undulator line for the Linac Coherent Light Source (LCLS) must be < 1.5 x 10-4. Mechanical shims were used to set the undulator gap to control K in the prototype, but this is too tedious a procedure to be used for all 33 undulator segments. Although the prototype undulator met all of the LCLS specifications, development continued in order to simplify the system. Various other alternatives for adjusting the field were considered. A canted-pole geometry was adopted that allows the K value to be changed by lateral translation of the entire undulator segment. This scheme also facilitates tapering the undulator line to accommodate energy loss in the electron beam. The prototype undulator was subsequently modified to test the canted-pole concept. Magnetic measurements demonstrated that the undulator with canted poles meets all LCLS specifications, and is more cost-effective to implement.

TUPOS49 First Direct Comparisons of a COTRI Analytical Model to Data from a SASE FEL at 540, 265, and 157 nm
Alex H. Lumpkin, Roger J. Dejus (ANL/APS, Argonne, Illinois), Don W. Rule (NSWC-CD, West Bethesda)

We have been addressing fundamental aspects of the microbunching that is induced by the self-amplified spontaneous emission (SASE) free-electron laser (FEL) process using coherent optical transition radiation interferometry (COTRI) techniques. Over the last several years we have extended operations from the visible to the VUV regime at the Advanced Photon Source (APS) low-energy undulator test line (LEUTL) project. We have now performed our first direct comparisons of the results of an analytical model to COTRI experimental data at 540, 265, and 157 nm. The direct comparisons illustrate a number of details in the images that are not matched by the simplifying assumption of a single Gaussian transverse beam profile of the size consistent with the incoherent OTR measurements. This result indicates there are localized transverse portions of the beam distribution with a higher bunching fraction than the mean. The different beam energies used result in different overlaps of relevant functions,and this aspect probed the model’s applicability and sensitivities.

TUPOS50 Use of VUV Imaging to Evaluate COTR and Beam-Steering Effects in a SASE FEL at 130 nm
Alex H. Lumpkin, Yong-Chul Chae, Roger J. Dejus, Mark Erdmann, John W. Lewellen, Yuelin Li (ANL/APS, Argonne, Illinois)

We have continued to explore VUV operations on the Advanced Photon Source (APS) self-amplified spontaneous emission (SASE) free-electron laser (FEL). With the installation of a fifth VUV imaging station located after undulator 7 of an eight-undulator series, we have performed our most complete SASE gain curve measurements at 130 nm as well as obtaining beam profile, position, and divergence information. This is the shortest wavelength to date for our complementary coherent optical transition radiation (COTR) measurements. We have also done the first experimental test of Tanaka et al.’s analytical model for the effects of a single-kick error of the e-beam on gain and microbunching in a SASE FEL. In addition, we compared the e-beam image centroid positions with those of the alignment laser at the available cameras and the local rf BPM readings to sort out the effective trajectory and its effect on overall gain. The FEL performance was consistent with GENESIS simulations of the experiment described in detail in a companion paper.