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Abstract
In a lepton storage ring of very high energy (e.g. in the

e+e− Higgs factory) synchrotron radiation from quadrupoles

constraints transverse dynamic aperture even in the ab-

sence of any magnetic nonlinearities. This was observed in

LEP and the Future Circular e+e− Collider (FCC-ee). Syn-
chrotron radiation in the quadrupoles modulates the particle

energy at the double betatron frequency. Energy modulation

varies transverse focusing strength at the same frequency and

creates a parametric resonance of the betatron oscillations.

Starting from 6d equations of motion we derive and solve

the relevant differential equation describing the resonance,

and show good agreement between analytical results and

numerical simulation.

INTRODUCTION
Two future electron-positron colliders FCC-ee (CERN)

[1] and CEPC (IHEP, China) [2] are now under development

to carry experiments in the center-of-mass energy range from

90 GeV to 350 GeV. In these projects strong synchrotron

radiation (power P ∝ E4) is a source of effects negligible

at low energy but essential at high energy, which influence

beam dynamics and collider performance. One example is

luminosity degradation caused by the particle radiation in

the collective field of the opposite bunch (beamstrahlung [3])

either due to the particle loss [4] or because of the beam en-

ergy spread increase [5]. Another example is about reduction

of the transverse dynamic aperture due to synchrotron radia-

tion from quadrupole magnets. John Jowett is the first who

pointed out this effect in LEP collider with maximum beam

energy about 100 GeV [6]. Switching on the radiation from

quadrupoles in the particle tracking decreased the stable

betatron amplitude as compared to the radiation from bend-

ing magnets only. Jowett gave a description of this effect:

“Here I shall briefly describe a new effect which I propose

to call Radiative Beta-Synchrotron Coupling (RBSC). It is

a non-resonant effect. A particle with large betatron ampli-

tude makes an extra energy loss by radiation in quadrupoles.

If you imagine that its betatron amplitude does not change

much over a number of synchrotron oscillations (that is not

essential to the effect), you can say that its “effective sta-

ble phase angle” will change to reflect the greater energy

loss. The particle will tend to oscillate about a displaced

fixed point in the synchrotron phase plane. This results in a

growth of the oscillation amplitude which may eventually

lead the particle outside the stable region in synchrotron
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phase space." Jowett illustrates above assertion with syn-

chrotron phase trajectories for two stable particles (denoted

by P and Q in Fig. 1) and one unstable (denoted by R) [7].

The tracking incorporates only radiation damping (quantum

noise is absent) from both bending and quadrupole magnets.

Figure 1: The vertical RBSC instability in LEP at 90 GeV

projected into synchrotron phase space. Three lines show

the motion of three particles P, Q and R with different initial

conditions. P starts with zero betatron amplitude and large

longitudinal deviation. It remains stable and damps to the

equilibrium synchrotron phase. Q and R start with longi-

tudinal coordinates corresponding to the closed orbit but

with vertical amplitude 5.5 mm and 6 mm respectively. Q is

stable while R’s amplitude grows in few turns until it is lost.

A fourth particle has been tracked with quantum emission

to give the cloud of points representing the core of the beam

around the closed orbit.

In [8] Jowett has mentioned that the RBSC rarely occurs in

isolation: “Most often some other effect limits the dynamic

aperture before the RBSC limit is reached. In the standard

(LEP) lattice the horizontal dynamic aperture is limited by

a rather strong shift of the vertical tune with the horizontal

action variable, bringing Qy down onto the integer.”

Our interests to the subject was inspired by the FCC-ee lat-

tice study. With the help of SAD accelerator design code [9]

K. Oide demonstrated FCC-ee transverse dynamic aperture

reduction due to radiation from quadrupoles [10], “While

the radiation loss in dipoles improves the aperture, espe-

cially at tt̄, due to the strong damping, the radiation loss in
the quadrupoles for particles with large betatron amplitudes
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reduces the dynamic aperture. This is due to the induced

synchrotron motion through the radiation loss”.

We crosschecked the simulation made by Oide using

MAD-X PTC [11] and the homemade software TracKing

[12] including SR from quadrupoles and found good agree-

ment between all three codes. Nevertheless, detailed con-

sideration has shown different nature of the particle loss in

horizontal and vertical planes. Radiation from quadrupoles

at large horizontal amplitude indeed greatly shifts the syn-

chronous phase, induces large synchrotron oscillation, ex-

cites strong synchro-betatron resonances and, finally, moves

the horizontal tune toward the integer resonance (due to the

nonlinear chromatic and geometrical aberrations) according

to the mechanism described by Jowett and Oide. However,

in the vertical plane the picture of the particle loss was quite

different. The energy loss from radiation in quadrupoles for

the vertical plane is substantially smaller than for the hori-

zontal plane and does not provide large displacement of the

synchronous phase and synchrotron oscillation. Instead, we

found that increase of the vertical betatron oscillation ampli-

tude modifies the vertical damping until, at some threshold,

the damping changes to rising and the particle gets lost.

This new effect is a parametric resonance in oscillations

with friction; radiation from quadrupoles modulates the

particle energy at the double betatron frequency; therefore,

quadrupole focusing strength also varies at the doubled be-

tatron frequency creating the resonant condition. However,

due to friction, resonance develops only if oscillation ampli-

tude is larger than a certain value. The remarkable property

of this resonance is that it occurs at any betatron tune (not

exactly at half-integer) and hence can be labeled as “self-

inducing parametric resonance”.

We will derive particle equations of motion in presence

of the radiation from quadrupoles, consider particle loss for

both transverse planes and compare results with computer

simulation.

PARAMETERS VALUES AND
OBSERVATIONS FROM TRACKING

For the FCC-ee lattice “FCCee_z_202_nosol_13.seq” at

45 GeV Figs. 2 and 3 show dynamic aperture obtained by

MADX PTC [11] tracking with synchrotron radiation from

all magnetic elements and without. Figure 4 compares dy-

namic aperture with synchrotron radiation from dipoles

only and dynamic aperture with radiation from dipoles

and quadrupoles obtained by homemade software (TracK-

ing [12]). The observation point is interaction point (IP).

Inclusion of synchrotron radiation in quadrupoles into

tracking software decreases dynamic aperture

• in vertical direction from Ry = 142σy to Ry = 57σy ,

• in horizontal direction from Rx = 109σx to Rx =

65σx .

FCC-ee lattice has two IPs and Table 1 gives the relevant

parameters.

Figure 2: Dynamic aperture with synchrotron radiation from

all magnetic elements, tracking by MADX PTC.

Figure 3: Dynamic aperture without synchrotron radiation

from all magnetic elements, tracking by MADX PTC.
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Figure 4: Dynamic aperture with synchrotron radiation from

quadrupoles (blue) andwithout (magenta), tracking by home-

made software.

Table 2 lists total synchrotron radiation energy loss from

different type of magnets. For particles with vertical ampli-

tude energy loss from final focus (FF) quadrupoles dom-

inates the loss from the arc quadrupoles. For particles
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Table 1: FCC-ee lattice parameters

E0 [Gev] 45.6

tunes: νx/νy/νs 269.14/267.22/0.0413

damping times:

τx/τy/τσ [turns] 2600/2600/1300

IP: βx/βy [m] 0.15/0.001

εx/εy [m] 2.7 × 10−10/9.6 × 10−13

IP: σx/σy [m] 6.3 × 10−6/3.1 × 10−8

σδ 3.8 × 10−4

with horizontal amplitude energy losses in FF and the

quadrupoles are comparable.

Table 2: Total energy loss from dipoles, final focus

quadrupolesQFF, focusing and defocusing arc quadrupoles
QF and QD

Type N U(50σx), MeV U(50σy), MeV
Dipoles 2900 35.96

QFF 4 12 2

QF 1470 4.1 3.7 × 10−3

QD 1468 1.5 1.5 × 10−2

Averaged over betatron phases radiation from quadrupoles

is ∮ 
2 2Uq =

C
2π

γ
E4 K2 + y )ds0 1 (x

(1)[( ) ( ) ]
= E0ΓΠ K1

2βx Jx + K1
2βy Jy ,

E4
0where Γ =

Cγ is radiation related factor, Π is circumfer-
2π p0c

ence, and the corresponding lattice integrals are( )
K1
2βx = 4 × 10

−3 m−3 ,( ) 
m−3K1

2βy = 1.4 × 10
−1 .

For understanding the reasons of particle loss we studied

with tracking particle trajectories in vicinity of dynamic

aperture border. Figure 5 shows phase and time trajectories

of the first unstable particle with initial vertical coordinate

y = 58σy and remaining five coordinates are zero. In the
longitudinal plane {PT,T} synchrotron oscillations excited
by additional power loss are damped to zero and suddenly

something forces particle to walk away.

Figure 6 shows the change of envelope evolution for par-

ticles with initial vertical coordinate around the dynamic

aperture boundary y = {50; 52; 55; 57.5; 58; 58.5}×σy , hor-
izontal coordinates are zero, longitudinal are chosen with

respect to the new synchronous point.

Figures 7 and 8 show phase and time trajectories of the first

unstable particle with initial vertical coordinate x = 67.1σx
and remaining five zero. There is no damping and walking

away in the longitudinal plane {PT,T} as in case of vertical
initial conditions Fig. 5. On Fig. 8 notice the bottom left plot

showing phase advance per turn with respect to turn number;

the particle action starts to grow after phase advance per turn

reaches an integer.

EQUATIONS OF MOTION
We start from Hamiltonian

2x
H(x, σ, y, px, pσ, py; s) = 1 + pσ + K0x + K2

20

x2 − y2 x3 − 3xy2
+ K1 + K2

2 6� (2)

− (1 + K0x) (1 + pσ)2 − p2 − p2x y( ) ( )
eV0 λRF 2πσ

+ − cos φs + δ(s − s0) ,p0c 2π λRF

where c is the speed of light, p0 and E0 are the reference mo-
mentum and energy, e is the electron charge, Bρ = −e/p0c
is the rigidity, K0 = By(0)/Bρ is the reference orbit cur-
vature, K1 = (dBy/dx)/Bρ is the normalized quadrupole
gradient, K2 = (d2By/dx2)/Bρ is the normalized sextupole
strength, pσ = ΔE/p0c is the longitudinal momentum,

px,y = Px,y/p0 are the normalized transverse momenta,
V0 , λRF are the RF cavity voltage amplitude and wave length,
s is the azimuth along the orbit, σ = s−ct is the longitudinal
coordinate conjugate to the longitudinal momentum pσ , s0
is the position of point like RF cavity, φs is the phase of RF
field.

Radiation power with assumption of negligible electron

mass (β = v/c = 1 ,E = pc) is

Cγ
P = c e2E2B2

2π ( )
E4 2 2= c

Cγ
1 + 2pσ)(K0

2 + 2K0K1x + K2 + y )0 1 (x2π ( )
2 2= c

C
2π

γ
E4 K0

2(1 + 2pσ) + 2K0K1x + K1
2(x + y ) ,0

(3)

where B2 = (By+xdBy/dx)2+y2(dBy/dx)2 and we dropped
2 2terms with p and 4K0K1xpσ , 2K

1
2pσ(x + y2).σ

The next step is to expand Hamiltonian Eq. (2) up to third

order in all variables, neglect the term K0x(p2 +p2)/2 due tox y

its smallness, and obtain equations of motion where radiation

is included by hand with the term describing the change of

momenta,

'x = px − pxpσ (4)

x2 − y2'p = K0pσ − x(K0
2 + K1) − K2

2x [
2 2

]
− Γpx K0

2(1 + 2pσ) + x(2K0K1 + K0
3) + K1

2(x + y )

(5)

'y = py − pypσ (6)
'p = yK1 + K2xyy [ ]

K2 2 2− Γpy 0 (1 + 2pσ) + x(2K0K1 + K0
3) + K1

2(x + y )

(7)

2 2p pyxσ' = −K0x − − (8)
2 2
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Figure 5: Phase and time trajectories of the first unstable particle with initial conditions {x = 0, y = 58σy, px = 0, py =
0, σ = 0, pσ = 0}.

Figure 6: Time evolution of vertical oscillations for particles with initial vertical coordinate y = {50; 52; 55; 57.5; 58; 58.5}×
σy , horizontal coordinates are zero, longitudinal are adjusted for synchronous point.
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Figure 7: Phase and time trajectories of the first unstable particle with initial conditions {x = 67.1σx, y = 0, px = 0, py =
0, σ = 0, pσ = 0}.
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Figure 8: Square root of action and phase advance of the first unstable particle with initial conditions {x = 67.1σx, y =
0, px = 0, py = 0, σ = 0, pσ = 0}.

62th ICFA ABDW on High Luminosity Circular e+e− Colliders eeFACT2018, Hong Kong, China JACoW Publishing
ISBN: 978-3-95450-216-5 doi:10.18429/JACoW-eeFACT2018-TUOAB01

TUOAB01
50

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Optics+dynamics



( ) ( )
eV0 2πσ'p = − sin φs + cos φ δ(s − s0)σ p0c λRF

s[ ]
2 2− Γ K0

2(1 + 2pσ) + x(2K0K1 + K0
3) + K1

2(x + y ) ,
(9)

Cγ 0where Γ =
2π

E4

, and we expanded RF related cos(. . . ) to
first order of σ

p
.
0c

SOLUTION OF LONGITUDINAL
EQUATIONS OF MOTION

At first, we will solve longitudinal equations of motion

Eqs. (8) and (9) considering motion in the vertical plane

and neglecting motion in the horizontal plane. Due to the

fact that longitudinal motion is much slower than transverse

(synchrotron oscillation frequency is lower than betatron),

we consider vertical oscillation amplitude independent of

time and solve decoupled equations. Splitting horizontal

motion into betatron part and dispersion part x = xβ + ηpσ ,
px = pxβ+ξpσ , neglecting betatronmotion xβ = 0, pxβ = 0

yields equations

2 2p
' σ z
σ = −K0ηpσ − ξ2

p
2
−

2
(10)( ) ( )

eV0 2πσ'p = − sin φs + cos φs δ(s − s0)σ p0c λRF[
− Γ K0

2 + pσ(2K0
2 + 2K0K1η + K0

3η)]
2 2+K1

2(η2pσ + y ) . (11)

Averaging of the obtained equations over the revolution

period (as usually done for synchrotron motion) introduces

familiar quantities: momentum compaction∮
1

α = (K0η) = K0ηds , (12)
Π

the relative energy loss from dipoles per turn

1 U0 ( )
= Γ K2 , (13)0Π p0c

wave vector of synchrotron oscillations( ) ( ν )2α eV0 2π sk2 = − cos φs = , (14)s Π p0c λRF R

longitudinal damping decrement( )
−12ασ[m ] = Γ (2K0

2 + 2K0K1η + K0
3η) ∮  

U0 (2K0K1η + K
0
3η)ds

= 2 + ∮ 
Πp0c K

0
2ds (15)( )

U0 I4
= 2 + ,
Πp0c I2

whereΠ = 2πR is he ring circumference, R is the average ra-

dius, angular brackets denote averaging over circumference∮ 
(. . . ) = . . . ds/Π, νs is the synchrotron oscillations tune,

the RF field phase is chosen according to (−eV0) sin φs = U0,

I4 and I2 are the synchrotron integrals [13].
The factors

(
ξ2

)
and

(
K
1
2η2

)
are small, and multiplication

by p2 makes them even smaller; therefore, we neglect them.σ
2In order to deal with the terms y2 and p , we use they

principal solution of the vertical motion equation [14]

y = Ay fy + A∗ f ∗y y
(16)

' f ∗'py = Ay fy + A∗y y ,

where constant amplitude Ay depends on initial conditions,

fy is Floquet function with following properties 
fy = βyeiψy , (17)∫ s

ψy(s) =
dτ
, (18)

0 βy(τ)

f ∗' 'fy y − fy fy
∗ = −2i , (19)( )'

' 1 βy iψyf =  + i e , (20)y 2βy  ( )2'
1 β

' f ∗'
y

f = + 1 = γy , (21)y y βy 2  ( ' )2
1 βy'2 ' i2ψyfy = 2

− 1 + iβy e , (22)
βy

where i is imaginary unit, βy is beta function, ψy is betatron
phase advance. Hence,

2 f ∗ 2 f 2 + A∗2 f ∗2y = (Ay fy + A∗y y ) = Jyβy + A2y y y y ,
(23)

2 ' + A∗ f ∗' 2 γy + A2 '2 + A∗2 f ∗'2py = (Ay fy y y ) = Jy y fy y y ,

where action relates to amplitudes as Jy = 2Ay A∗ , Twissy
'parameter gamma is γy = (1+ α

2)/βy , αy = −β /2 and they y

subscript prime ' denotes d/ds.
In order to use Krylov-Bogolyubov averaging method we

2expand py and ΓK
1
2y2 into Fourier series:

∞ 
2 i2ky s in s

ΓK1
2y = ΓK1

2βy Jy + ΓA2ye Fy,ne R

n=−∞

∞ 
−i2ky s −in s

+ ΓA∗2e F∗ e R , (24)y y,n
n=−∞

∞ 
2 i2ky s in s

p = Jyγy + A2e Py,ne R
y y

n=−∞

∞ 
+ A∗2 −i2ky s P∗ −in s

e e R , (25)y y,n
n=−∞

where ky = 2πνy/Π = νy/R is a wave vector of vertical

betatron oscillations with tune νy ,∫ Π
K2 −i2ky s−in

s

Fy,n =
1

1 (s) fy
2(s)e R ds

0Π ∫ (26)
Π1 s s

K2 i(2ψy (s)−2νy −n= 1 (s)βy(s)e R R )ds ,
Π 0
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∫ Π1 '2 −i2ky s−in
s

Py,n = fy (s)e R ds
Π 0∫ ( )2Π β' (s)1 1 y (27)

= − 1 + iβy
' (s) ×

Π 0 βy(s) 2

i(2ψy (s)−2νy −n× e R
s

R
s )ds .

Applying averaging method and keeping only slowly os-

cillating terms (Jowett omitted these terms in [15]) yields

equations of motion ( )
γy

σ' = −αpσ − Jy
2

A2y i s (2νy+n)− Py,ne R (28)
2

A∗2y −i s (2νy+n)− P∗ e R ,
2 y,n

k2 ( )
' sp = σ − 2ασpσ − Γ K1

2βy Jyσ α
i s (2νy+n)− ΓA2yFy,ne R (29)

−i s (2νy+n)− ΓA∗2F∗ e R ,y y,n

where n = −[2νy] is the negative integer part of the double
betatron tune and is the only slow oscillating harmonic.

Synchronous Phase
Equating the right parts of the Eqs. (28) and (29) to zero

and eliminating the oscillating terms results in synchronous

longitudinal point

( ) α ( )
σ = −

ασ
γy Jy + Γ K1

2βy Jy (30)
k2 k2s s

1 ( )
pσ = − γy Jy , (31)

2α

where the term with Γ corresponds to additional energy loss

from radiation in quadrupoles, the other terms come from

lengthening of particle trajectory. Jowett obtained similar

equations in [6] and [16].

Particle with not adjusted initial conditions will develop

synchrotron oscillations with respect to the new synchronous

point. Using the longitudinal invariant

α2 2σ2 + p = const (32)σk2s

yields maximum energy deviation

_  ( ) ( ) 2 ( )2K2ασ γy Γ
1
βy γy

pσ,max = Jy − + + (33)
ksα ks 4α2

Solution without Oscillating Terms
Solution of Eqs. (28) and (29) without oscillating terms is

known and consist of the constant term describing the shift

of synchronous energy, and two terms describing damping

synchrotron oscillations (only for pσ)( ) ( )
γy −ασ s k2 − α2pσ = − Jy + B1e cos s σs
2α ( ) (34)

+ B2e−ασ s sin s ks2 − α2 .σ

Particular Solution
Introducing æy = (2νy+n)/R and transforming the system

of first order differential Eqs. (28) and (29) into the the

second order equation gives

'' 'pσ + k2pσ + 2ασp =s σ

k2
− A2y

( 
s

2α
Py,n + iΓæyFy,n

) 
eiæy s

− A∗2y

( 
k2s
2α

P∗y,n − iΓæyF∗
y,n

) 
e−iæy s .

(35)

Particular solution of Eq. (35) is

pσ = −
A2y

( 
k2s
2α Py,n + iΓæyFy,n

)
k2s − æ2y + i2æyασ

eiæy s

−
A∗2y

( 
k2s
2α P∗y,n − iΓæyF∗

y,n

)
k2s − æ2y − i2æyασ

e−iæy s .

(36)

Since

æy > ks > ασ , (37)

Γæy

  Fy,n

  > k2s
2α

  Py,n

  (38)

we can rewrite solution as

pσ ≈ iA2y
ΓFy,n

æy
eiæy s − iA∗2y

ΓF∗
y,n

æy
e−iæy s . (39)

Putting it in the form comfortable for the future use we have

A2 iæy s ∗ A∗2 −iæy spσ = cn ye + cn y e( ) (40)
= |cn | Jy cos æys + χ0 ,

where ( )
k2s Py,n + iΓæyFy,n2α ΓFy,n

cn = − ≈ i (41)
ks2 − æ2y + i2æyασ æy

and the phase χ0 = arg(cnA2) depends on transverse initialy

conditions. The appearance of phase χ0 is ambiguous, be-
cause in the averaging over the revolution period we lose all

the information regarding particle initial transverse phase.

Therefore, we will choose χ0 in order to simplify further
calculations.
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SOLUTION OF VERTICAL EQUATIONS
OF MOTION

With the same assumptions as in the previous paragraph

Eqs. (6) and (7) are

'y = py − pypσ , (42)[
2
]

'py = K1y + K2ηpσ y − Γpy K0
2 + pσD + K1

2y , (43)

where D = 2K
0
2 + 2K0K1η + K

0
3η and for machines with

separate functions magnets is negligible, we neglected the

K2 2small term Γpy 1
η2p . We may apply Krylov-Bogolyubovσ

averaging method directly to Eq. (42), Eq. (43), but it is more
''illustrative to apply it to y equation. During derivation of

''y equation we neglect the terms containing p' , becauseσ

it either oscillates with synchrotron tune or with double

fractional part of betatron frequency, and after derivation

will receive a small factor. The desired equation is( )
'' K2 2 'y −(K1 − (K1 − K2η)pσ) y+Γ 0 + K1

2y y = 0 . (44)

This is an equation of parametric oscillator; the second term

depends on pσ which contains terms oscillating at fractional

double betatron frequency Eq. (40). It is also a Van der Pol

oscillator (nonlinear friction, the the third term). Jowett ob-

tained Van der Pol equation for nonlinear wiggler (combined

quadrupole and sextupole) in [16].

Substituting expression for pσ , we neglect the constant
shift and damped synchrotron oscillations Eq. (34), and keep

only particular solution Eq. (40) oscillating on fractional

part of double betatron frequency, i.e. we consider only

parametric resonance. Substituting principal solution for

y Eq. (16), averaging and keeping only slowly oscillating

terms yields equation for amplitude evolution( )
(−2i)A' = Ay ΓK0

2(−αy + i)y ( )
2 i(−2ψy+æy s+χ0)+ Ay A∗y |cn | (K1 − K2η)βye( ) ( )

− 3A2 A∗ ΓK1
2βyαy + iA2 A∗ ΓK1

2βy .y y y y

(45)( ) ( )
The terms ΓK

1
2βyαy and ΓK

1
2βy are small and we ne-

glect them, obtaining

1 ( )
'Ay = −2

ΓK0
2(1 + iαy) Ay( )i 2i(−2ψy+æy s+χ0)+ |cn | (K1 − K2η)βye Ay A∗

2 y

= −B1Ay + iB2 Ay
2 A∗ .y

(46)

The real part of the obtained equation describes evolution

of the Ay (e.g. damping), the imaginary part describes the

change of the betatron tune. In order to solve Eq. (46) we

introduce coefficients

1 ( )
B1 = ΓK0

2(1 + iαy) (47)
2 ( )1 i(−2ψy+æy s+χ0)B2 = |cn | (K1 − K2η)βye (48)
2

where phase χ0 appeared from Eq. (40) and is undefined.

Multiplying Eq. (46) by A∗ and adding a complex conjugatey

of the equation yields

A∗ )' A∗ A∗ 2(Ay = −2Re(B1)Ay − 2Im(B2)(Ay ) (49)y y y

or

J ' = −2Re(B1)J∗ ∓ Im(B2)J2 , (50)y y y

where Jy = 2Ay A∗ , Re() and Im() stand for real and imagi-y

nary parts. The first term describes damping of the action( )
with vertical damping coefficient 2Re(B1) = ΓK2 , the

0
second term if negative increases damping, if positive than

counteracts damping. The sign of the second terms depends

on the sign of the phase χ0, which appeared from solving

averaged over revolution period longitudinal equations of

motion Eqs. (35) and (40). Since longitudinal motion is slow

than it can not depend on the phase of the transverse motion;

whatever the phase was initially, it will change with time.

Therefore, originally damping oscillations will change into

rising oscillations (parametric resonance). Equation (50)

solution is

Jy,0e−2Re(B1)s

Jy(s) = . (51)
Im(B2) (1 − e−2Re(B1)s)1 ± Jy,0 2Re(B1)

With appropriate sign before the second term, Eq. (50) per-

mits existence of the boundary initial actions Jy,lim: lower
initial actions will provide negative J ' i.e. damping, largery

will provide positive J ' i.e. rising or unstable motion. Thisy

limiting action is the boarder of dynamic aperture and is

2Re(B1)Jy,lim = . (52)
±Im(B2)

Existence of initial amplitudes with stable motion at para-

metric resonance is due to friction (radiation damping).

Parametric resonance In order to prove the choice of

χ0 we will solve Eq. (46) differently. Distinguishing modu-
lus and argument of amplitude Ay = ayeiϕy , B1 = |B1 | eiϕ1 ,
B2 = |B1 | eiϕ2+iχ0 and substituting in Eq. (46) results in two
equations

a' = −ay |B1 | cos(ϕ1) − a3 |B2 | sin(−2ϕy + ϕ2 + χ0)y y

(53)

ϕ' = − |B1 | sin(ϕ1) + a2 |B2 | cos(−2ϕy + ϕ2 + χ0) (54)y y

( )
1 ΓK2where |B1 | sin(ϕ1) = Im(B1) = ≈ 0 is small
2 0

αy
and describes the change of vertical betatron tune because

of damping; this is equivalent to ϕ1 = 0. The second term
in Eq. (54) describes tune dependence on amplitude. Equa-

tions (53) and (54) have complex topology in {ay, ϕy} space,
which has two stable points ϕy = ϕ2 + χ0 ± π/4 providing
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ϕ' = 0. At this points the modulus of amplitude isy

ay,0e−|B1 |s

ay(s) = ( )
2 |B2 | 1 − e−|B1 |s1 + a sin(−2ϕy + ϕ2 + χ0)y,0 |B1 |

ay,0e−|B1 |s

= .( )
2 |B2 | 1 − e−|B1 |s1 ± a
y,0 |B1 |

(55)

The amplitude has two solutions: rising and damping. This

is typical for parametric resonance and damping solution

always changes into rising.

LONGITUDINAL AND HORIZONTAL
MOTION

Horizontal (Eqs. (4-5)) and longitudinal (Eqs. (8-9)) equa-

tions of motion with y = 0 and py = 0 are similar to longi-
tudinal and vertical Eqs. (6-7) with xβ = 0 pxβ = 0. The

unique for horizontal motion term −K0xβ in Eq. (8) will pro-
duce a synchro-betatron resonance at νx±νs = integer . This
resonance plays an important role, but out of scope of our

work. Table 3 shows that the shift of synchronous point and

amplitude of synchrotron oscillations, if initial longitudinal

coordinates are not adjusted to the new synchronous point,

are significantly larger for horizontal oscillations than for

vertical at the boundary of dynamic aperture. Observation of

Table 3: Synchronous point and amplitude of synchrotron

oscillations for different transverse initial conditions

{X0,Y0} {67σx,0} {0,58σy}

pσ,max/σδ 4 0.26

pσ,syn/σδ −2.5 −0.026

σsyn/σδ 3.05 0.29

COMPARISON WITH TRACKING AND
NUMERICAL ESTIMATIONS

For given vertical tune harmonic number is n = −534,
æy = 2.8× 10

−5 m−1, ks = 2.6× 10−6 m−1. The harmonics

Eqs. (26), (27) and (41) are

Fy,n = (−0.14,3 × 10
−5)m−3 Fy,n = 0.14m

−3

Py,n = (−0.13,0.0006)m
−1 Py,n = 0.13m

−1

cn = (−42.11,−6474.19)m−1 |cn | = 6474.33m−1 .

The numbers prove the inequality Eq. (38)

Γæy Fy,n = 5.13 × 10
−6

s

2

k
α

2

Py,n = 3.22 × 10
−8 .

Coefficients Eqs. (47) and (48) are

B1 = (4.03 × 10−9,−2.76 × 10−10)m−1

|B1 | = 4.04 × 10−9 m−1

B2 = (10.35,6.43)m−2

|B2 | = 12.18m−2 .

The border of dynamic aperture Eq. (52) is

Ry = 2Jy,limβy = 51.2σy , (56)

which corresponds well to the tracking result Ry = 57σy .

Resemblance of longitudinal phase trajectories on Figs. 5

and 9 proves our approach in solving longitudinal Eqs. (28)

and (29). Figure 9 presents numerical solution of the longi-

tudinal Eqs. (28) and (29) with vertical action in the form

Eq. (51) corresponding to initial condition y = 58σy .

phase advance per turn (bottom left) on Fig. 8 suggests that 4
particle is lost when phase advance reaches an integer (turn

65) and it happens when pσ = 7σδ . Using the detuning
2

coefficient and its chromaticity with initial conditions yields

p�/�
�

0

-2
Table 4: Tune shift contribution from detuning and detuning

chromaticity -4
∂νx
∂Jx

−5 × 104

∂2νx
∂Jx∂δ

−6.8 × 107

Jx 672εx
/
2

pσ 7σδ

Δνx =
∂νx
∂Jx

Jx −0.03

Δνx =
∂2νx
∂Jx∂δ

Jxpσ −0.11

νx(Jx = 0, pσ = 0) 0.14

-4 -2 0 2 4 6�/�s
Figure 9: Longitudinal phase trajectories from numerical

solution of Eqs. (28) and (29) with vertical action in the

form Eq. (51) corresponding to initial condition y = 58σy .
The last 200 turns are shown in red. Compare with top rigt

plot of Figure 5.

Figure 10 and Fig. 11 compare results of tracking and cal-

culations of longitudinal coordinate evolution (synchronous

phase) when initial longitudinal conditions were adjusted
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50

10
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1

Figure 10: Evolution of longitudinal coordinate from track-

0.50

0.10
0.05

�
Figure 12: Spectrum of vertical motion tracking correspond-

ing to initial condition y = 58σy , and adjusted longitudinal
initial conditions Eqs. (30) and (31).

�y = 0.212

�y + �x = 0.363

0.0 0.1 0.2 0.3 0.4 0.5

ing corresponding to initial conditions y = 50σy and y =

58σy and adjusted longitudinal initial conditions Eqs.(30) 0.010
and (31).

0.001

Figure 11: Evolution of longitudinal coordinate from calcu-

lations by Eqs. (30) and (31) corresponding to initial condi-

tions y = 50σy and y = 58σy .

according to Eqs. (31) and (30) in order to eliminate syn-

chrotron oscillations, for two particles with y = 50σy and
y = 58σy .
Figure 12 and Fig. 13 show spectra of vertical and lon-

gitudinal motion, proving existence of fractional part of

double betatron frequency in longitudinal motion. The dou-

ble frequency harmonic amplitude according to Eq. (40) is

pσ = 3.6 × 10−2σδ , which closely corresponds to the value
on Fig. 13

Figure 14 and Fig. 15 compare vertical action evolution

from tracking and calculation with Eq. (51). The boundary

of stable motion is 57.5σy from tracking and 51σy from
calculations by Eq. (52).

CONCLUSION
In horizontal plane, additional energy loss due to radiation

in quadrupoles, shifts synchronous point and develops large

synchrotron oscillations. Horizontal betatron tune depen-

dence on amplitude and chromaticity of this detuning shift

the tune toward the integer resonance resulting in particle

�e
pt
/ 10+4

10+5
10+6

�
Figure 13: Spectrum of longitudinal motion tracking corre-

sponding to initial condition y = 58σy , and adjusted longi-
tudinal initial conditions Eqs. (30) and (31).

Figure 14: Evolution of normalized square root of vertical

action from tracking corresponding to initial conditions y =

50σy , y = 57.5σy , y = 58σy , and adjusted longitudinal
initial conditions in Eqs. (30) and (31).

loss. This is similar to Radiative Beta-Synchrotron Coupling

(RBSC) proposed by Jowett [6].

Dynamic aperture reduction in the vertical plane with in-

clusion of synchrotron radiation in quadrupoles in FCC-ee

is due to parametric resonance. Radiation from quadrupoles

modulates the particle energy at the double betatron fre-

�s = 0.041 2 �y = 0.425

�x = 0.15

0.0 0.1 0.2 0.3 0.4 0.5
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Figure 15: Evolution of normalized square root of vertical

action from tracking corresponding to initial conditions y =

28σy , y = 50σy , y = 58σy .

quency; therefore, quadrupole focusing strength also varies

at the doubled betatron frequency creating the resonant con-

dition. However, due to friction, resonance develops only

if oscillation amplitude is larger than a certain value. The

remarkable property of this resonance is that it occurs at any

betatron tune (not exactly at half-integer) and hence can be

labeled as “self-inducing parametric resonance”. Our cal-

culations give the border of dynamic aperture Ry = 51.2σy ,
which corresponds well to the tracking result Ry = 57σy .
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