TUOBB —  WG3 - Optics and Beam Dynamics   (25-Sep-18   10:30—12:10)
Paper Title Page
TUOBB01 Optics Aberration at IP and Beam-beam Effects 66
 
  • K. Ohmi, Y. Funakoshi, H. Koiso, A. Morita, Y. Ohnishi, D. Zhou
    KEK, Ibaraki, Japan
  • K. Hirosawa
    Sokendai, Ibaraki, Japan
 
  Collision in SuperKEKB phase II commissioning has started in April 2018. Luminosity was lower than the geomterical value even in very low bunch current. Linear x-y coupling at IP caused by skew of QCS was conjectured as error source. x-y coupling correction using skew corrector of QCS resulted in luminosity recover of 2 times. After the QCS skew correction, luminosity is still limited at relatively low bunch current. Nonlinear x-y coupling at IP is conjectured as a source of the luminosity limitation. We discuss effects of linear and nonlinear x-y coupling at IP on the beam-beam performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUOBB01  
About • paper received ※ 25 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB02 Off-momentum Optics at SuperKEKB 71
 
  • Y. Ohnishi, H. Koiso, A. Morita, K. Ohmi, H. Sugimoto
    KEK, Ibaraki, Japan
  • K. Oide
    CERN, Meyrin, Switzerland
 
  The nano-beam scheme can squeeze the vertical beta function at the IP much smaller than the bunch length. It implies that the large chromaticity is generated in the vicinity of the final focus quadrupole magnets and the strong sextupoles are adopted to correct the chromaticity, for instance the local chromaticity corrections. While understanding of the off-momentum optics is important to optimize the dynamic aperture to make Touschek lifetime long and to reduce the luminosity degradation due to chromatic behaviors. In general, there is a discrepancy between measurements and those obtained from the optics model. The chromatic phase-advance is introduced to measure the off-momentum optics and correct by using sextupole magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUOBB02  
About • paper received ※ 12 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB03 Progress of Preliminary Work for the Accelerators of a 2-7GeV Super Tau Charm Facility at China 76
 
  • Q. Luo
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China U1832169 and the Fundamental Research Funds for the Central Univer-sities, Grant No WK2310000046
As the most successful tau-charm factory of the world, BEPC II will celebrate its 10th birthday this year and will finish its historical mission in the next decade. Because of its very important role in high energy phys-ics study, BEPC II will certainly need a successor, a new tau-charm collider. This paper discusses the feasi-bility of a greenfield next generation tau-charm collid-er named HIEPA. The luminosity of this successor is about 5×1034 cm−2s−1 pilot and 1×1035cm-2s−1 nominal, with the electron beam longitudinally polarized at the IP. The general scheme of the accelerators and the beam parameters are shown. Several key technologies such as beam polarization and beam emittance diag-nostics are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUOBB03  
About • paper received ※ 16 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB04 Different Optics within Large Energy Region at BEPCII 79
 
  • C.H. Yu, Y. Bai, C.C. Du, Z. Duan, Y.Y. Guo, D. Ji, S.C. Jiang, Y. Jiao, Y.M. Peng, Q. Qin, Y.S. Sun, S.K. Tian, J.Q. Wang, N. Wang, X. Wang, Y. Wei, Wen. Wen, J. Wu, Xing. Xing, Xu. Xu, C. Zhang, Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  BEPCII is designed at the beam energy of 1.89 GeV. According to the requirements of high energy physics, BEPCII has been operated in the energy region from 1.0 GeV to 2.3 GeV since 2009. The energy region is quite large so that it is very important to select optics for the optimized luminosity. Different optics within different energy region at BEPCII will be introduced in detail in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUOBB04  
About • paper received ※ 23 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)