Keyword: vacuum
Paper Title Other Keywords Page
TUYAA01 High Currents Effects in DAΦNE impedance, feedback, cavity, electron 82
 
  • C. Milardi, D. Alesini, A. Drago, A. Gallo, A. Ghigo, S. Guiducci, M. Serio, A. Stella, M. Zobov
    INFN/LNF, Frascati, Italy
  • P. Raimondi
    ESRF, Grenoble, France
 
  DAΦNE, the Italian lepton collider, operates routinely with high intensity electron and positron colliding beams. The high current multi-bunch beams are stored in two independent rings, each of them 97 m long, and are distributed in 100 ’ 110 contiguous buckets out of the 120 available, spaced by only 2.7 ns. Since its construction, DAΦNE has been operated in different configurations which, overall, allowed to store current up to 1.4 A and 2.45 A in the positron and in the electron beam respectively. Still today DAΦNE holds the record for the highest electron beam current ever stored in particle factories and modern synchrotron radiation sources. The DAΦNE experience in terms of beam dynamics optimization aimed at achieving the high intensity beams is presented, with special emphasis on the e-cloud related issues, which represent the dominant effect limiting the positron beam current.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUYAA01  
About • paper received ※ 24 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB01 Commissioning Status of SuperKEKB Vacuum System MMI, photon, wiggler, detector 226
 
  • K. Shibata, H. Hisamatsu, T. Ishibashi, K. Kanazawa, M. Shirai, Y. Suetsugu, S. Terui
    KEK, Ibaraki, Japan
 
  In the upgrade from the KEKB to the SuperKEKB, approximately 93% and 20% of the beam pipes and vacuum components of the positron ring and the electron ring were replaced with new ones. In the Phase-1 commissioning in 2016, vacuum scrubbing and confirmation of the stabilities of new vacuum components at approximately 1 A were carried out. Though some problems such as pressure bursts accompanying beam losses were revealed, no serious problem was found in the vacuum system. During the subsequent shutdown, the countermeasures against the problems were taken, and new beam pipes and components such as beam collimators were installed. The Phase-2 commissioning, where beam collision tuning was mainly performed, was carried out from March to July 2018. The collimators worked very well to suppress the background noise of the Belle-II detector, though some of them were damaged by the beam. The frequency of the pressure burst drastically decreased though the typical beam currents were lower than those of the Phase-1. The vacuum system of the SuperKEKB has been working generally well so far. The total beam doses of the SuperKEKB exceeded 1000 Ah, and the pressures decreased as expected.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEOAB01  
About • paper received ※ 02 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOAB04 Single Bunch Instabilities and NEG Coating for FCC-ee impedance, electron, collider, simulation 234
 
  • E. Belli
    Sapienza University of Rome, Rome, Italy
  • P. Costa Pinto, G. Rumolo, A. Sapountzis, T.F. Sinkovits, M. Taborelli
    CERN, Geneva, Switzerland
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • M. Zobov
    INFN/LNF, Frascati, Italy
 
  The high luminosity electron-positron collider FCC-ee is part of the Future Circular Collider (FCC) study at CERN and it has been designed to cover the beam energy range from 45.6 GeV to 182.5 GeV to study the properties of the Higgs boson and other particles. Electron cloud build up simulations on the Z resonance revealed the necessity of minimising the Secondary Electron Yield (SEY) of the pipe walls by applying a Ti-Zr-V Non-Evaporable Getter (NEG) coating in the entire ring. Beam dynamics simulations at 45.6 GeV pointed out that minimising the thickness of this layer is mandatory to reduce the resistive wall (RW) impedance, thus increasing the single bunch instability thresholds and ensuring beam stability during operation. However, reducing the coating thickness can affect the performance of the material and therefore the SEY. For this reason, an extensive measurement campaign was performed at CERN to characterise NEG thin films with thicknesses below 250 nm in terms of activation performance and SEY measurements. This paper also presents the FCC-ee longitudinal impedance model which includes all the current machine components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEOAB04  
About • paper received ※ 12 November 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPBB01 Operation of SuperKEKB in Phase 2 injection, operation, MMI, quadrupole 286
 
  • Y. Funakoshi, Y. Arimoto, H. Ikeda, T. Ishibashi, N. Ohuchi, S. Terui, X. Wang
    KEK, Ibaraki, Japan
 
  The Phase 2 commissioning of SuperKEKB was performed from March to July 2018. In this report, the operation statistics and the QCS quench issue which we encountered during Phase 2 are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEPBB01  
About • paper received ※ 20 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)