IR and MDI
Paper Title Page
TUPBB06 Fast Luminosity Monitoring for the SuperKEKB Collider (LumiBelle2 Project) 173
 
  • P. Bambade, S. Di Carlo, D. Jehanno, V. Kubytskyi, C.G. Pang, Y. Peinaud
    LAL, Orsay, France
  • Y. Funakoshi, S. Uehara
    KEK, Ibaraki, Japan
 
  Funding: - MSCA RISE E-JADE project, funded by European Commission grant number 645479 - Toshiko Yuasa France-Japan Particle Physics Laboratory (project A-RD-08)
LumiBelle2 is a fast luminosity monitoring system prepared for SuperKEKB*. It uses sCVD diamond detectors placed in both the electron and positron rings to measure the Bhabha scattering process at vanishing scattering angle. Two types of online luminosity signals are provided, a Train-Integrated-Luminosity at 1 kHz as input to the dithering feedback system used to maintain optimum overlap between the colliding beams in horizontal plane, and Bunch-Integrated-Luminosities at about 1 Hz to check for variations along the bunch trains. Individual beam sizes and offsets can also be determined from collision scanning. The design of LumiBelle2 will be described and its performance during the Phase-2 commissioning of SuperKEKB will be reported.
*First Tests of SuperKEKB Fast Luminosity Monitors During 2018 Phase-2 Commissioning" (WEPAL038) and "Early Phase 2 Results of LumiBelle2 for the SuperKEKB Electron Ring"(THYGBE4) presented at IPAC18
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPBB06  
About • paper received ※ 24 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA01 IR Design for High Luminosity and Low Backgrounds 194
 
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515 and HEP
New e+e accelerator designs aim for factory-like performance with high-current beams and high luminosities. These new machines will push interaction region designs to new levels and require a careful evaluation of all previous background sources as well as introduce possibly new background sources. I present here a summary of standard background sources and also suggest a new possible background source for Synchrotron Radiation (SR) namely, specular reflection. In addition, one will have to pay closer attention to the beam tail particle distribution as this may become a significant source of SR background from the high-current and high-energy beams of these new designs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA01  
About • paper received ※ 16 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA02 Machine Detector Interface for the e+e Future Circular Collider 201
 
  • M. Boscolo, O.R. Blanco-García
    INFN/LNF, Frascati, Italy
  • N. Bacchetta
    INFN- Sez. di Padova, Padova, Italy
  • E. Belli
    INFN-Roma, Roma, Italy
  • M. Benedikt, H. Burkhardt, D. El Khechen, K. Elsener, M. Gil Costa, P. Janot, R. Kersevan, A.M. Kolano, E. Leogrande, M. Lueckof, E. Perez, N.A. Tehrani, H.H.J. Ten Kate, O. Viazlo, G.G. Voutsinas, F. Zimmermann
    CERN, Meyrin, Switzerland
  • A.P. Blondel, M. Koratzinos
    DPNC, Genève, Switzerland
  • A.V. Bogomyagkov, E.B. Levichev, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
  • F. Collamati
    INFN-Roma1, Rome, Italy
  • M. Dam
    NBI, København, Denmark
  • A. Novokhatski, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K. Oide
    KEK, Ibaraki, Japan
 
  The international Future Circular Collider (FCC) study~[fccweb] aims at a design of p-p, \rm e+e-, e-p colliders to be built in a new 100~km tunnel in the Geneva region. The \rm e+e- collider (FCC-ee) has a centre of mass energy range between 90 (Z-pole) and 375~GeV (t\bar{t}). To reach such unprecedented energies and luminosities, the design of the interaction region is crucial. The crab-waist collision scheme~[ref:cw] has been chosen for the design and it will be compatible with all beam energies. In this paper we will describe the machine detector interface layout including the solenoid compensation scheme. We will describe how this layout fulfills all the requirements set by the parameters table and by the physical constraints. We will summarize the studies of the impact of the synchrotron radiation, the analysis of trapped modes and of the backgrounds induced by single beam and luminosity effects giving an estimate of the losses in the interaction region and in the detector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA02  
About • paper received ※ 03 November 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA03 Beam Blowup due to Lattice Coupling/Dispersion with/without Beam-beam 207
 
  • K. Oide, D. El Khechen
    CERN, Meyrin, Switzerland
 
  Funding: Work supported by JSPS KAKENHI Grant Number 17K05475. Also supported by the European Commission under project EuCARD–2, grant agreement 312453, and under the Horizon 2020, grant agreement 654166.
A significant blowup of the vertical emittance is observed in particle tracking in lattices with random skew quadrupoles, even without beam-beam effects with the FCC-ee lattice at ttbar. A Vlasov model well explains the blowup, and agrees with the tracking. This effect will set an additional limit on the goal of tuning of the vertical emittance of the lattice of colliders, well below the value at the collision.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA03  
About • paper received ※ 25 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA04 Early Commissioning of the Luminosity Dither System for SuperKEKB 212
 
  • Y. Funakoshi, T. Kawamoto, M. Masuzawa, S. Nakamura, T. Oki, M. Tobiyama, S. Uehara, R. Ueki
    KEK, Ibaraki, Japan
  • P. Bambade, S. Di Carlo, D. Jehanno, C.G. Pang
    LAL, Orsay, France
  • D.G. Brown, A.S. Fisher, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • D. El Khechen
    CERN, Geneva, Switzerland
  • U. Wienands
    ANL, Argonne, Illinois, USA
 
  SuperKEKB is an electron-positron double ring collider at KEK which aims at a peak luminosity of 8 x 1035 cm-2s-1 by using what is known as the ’nano-beam’ scheme. A luminosity dither system is employed for collision orbit feedback in the horizontal plane. This paper reports a system layout of the dither system and algorithm tests during the SuperKEKB Phase 2 commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA04  
About • paper received ※ 15 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA05 Machine Detector Interface for CEPC 217
 
  • S. Bai, J. Gao, H. Geng, D. Wang, Y. Wang, C.H. Yu, Y. Zhang, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  The Circular Electron Positron Collider (CEPC) is a proposed Higgs factory with center of mass energy of 240 GeV to measure the properties of Higgs boson and test the standard model accurately. Machine Detector Interface (MDI) is the key research area in electron-positron colliders, especially in CEPC, it is one of the criteria to measure the accelerator and detector design performance. In this paper, we will introduce the CEPC superconducting magnets design, solenoid compensation, synchrotron radiation and mask design, detector background, collimator, mechanics assembly etc on, which are the most critical physics problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA05  
About • paper received ※ 29 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA06 Beam Background at SuperKEKB During Phase 2 Operation 221
 
  • A. Paladino
    KEK, Tsukuba, Japan
 
  The SuperKEKB accelerator, the upgrade of the KEKB machine, will operate at an unprecedented instantaneous luminosity of 8x1035/cm2/s1, providing the Belle II experiment an expected integrated luminosity of about 50 inverse ab in ten years of operation. With the increased luminosity, the beam background is expected to grow significantly with respect to KEKB, leading, among other effects, to possible damage of detector components and suppression of signal events. We present studies done during the Phase 2 operation of SuperKEKB to evaluate the contribution of each background source, such as Touschek effect, beam-gas scattering, synchrotron radiation, and injection background. We also present studies performed on collimators and other solutions adopted to mitigate beam backgrounds in the interaction region.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA06  
About • paper received ※ 30 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)