Author: Zhu, Y.S.
Paper Title Page
MOYAA05 The Status of CEPC 30
 
  • C.H. Yu, S. Bai, T.J. Bian, X. Cui, J. Gao, H. Geng, D.J. Gong, D. Ji, Y.D. Liu, C. Meng, Q. Qin, D. Wang, N. Wang, Y. Wang, Y. Wei, J.Y. Zhai, Y. Zhang, H.J. Zheng, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Circular electron-positron collider (CEPC) is a dedi-cated project proposed by China to research the Higgs boson. The collider ring provides e+ e collision at two interaction points (IP). The luminosity for the Higgs mode at the beam energy of 120GeV is 3*1034 cm-2s-1 at each IP while the synchrotron radiation (SR) power per beam is 30MW. Furthermore, CEPC is compatible with W and Z experiments, for which the beam ener-gies are 80 GeV and 45.5 GeV respectively. The lumi-nosity at the Z mode is higher than 1.7*1035 cm-2s-1 per IP. Top-up operation is available during the data taking of high energy physics. The status of CEPC will be introduced in detail in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-MOYAA05  
About • paper received ※ 23 September 2018       paper accepted ※ 08 March 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA05 Machine Detector Interface for CEPC 217
 
  • S. Bai, J. Gao, H. Geng, D. Wang, Y. Wang, C.H. Yu, Y. Zhang, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  The Circular Electron Positron Collider (CEPC) is a proposed Higgs factory with center of mass energy of 240 GeV to measure the properties of Higgs boson and test the standard model accurately. Machine Detector Interface (MDI) is the key research area in electron-positron colliders, especially in CEPC, it is one of the criteria to measure the accelerator and detector design performance. In this paper, we will introduce the CEPC superconducting magnets design, solenoid compensation, synchrotron radiation and mask design, detector background, collimator, mechanics assembly etc on, which are the most critical physics problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA05  
About • paper received ※ 29 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB02 CEPC Superconducting Magnets 241
 
  • Y.S. Zhu, F.S. Chen, W. Kang, M. Yang, X.C. Yang
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work was supported in part by the Yifang Wang scientific Studio of the Ten Thousand Talents Project and in part by the National Natural Science Foundation of China under Grant 11875272.
A Circular Electron Positron Collider (CEPC) with a circumference about 100 km, a beam energy up to 120 GeV is proposed to be constructed in China. CEPC will be a double ring collider with two interaction points. Most magnets for CEPC accelerator are conventional magnets, but some superconducting magnets are needed in the interaction region. Final focus superconducting high gradient quadrupoles are inside the solenoid field of Detector magnet, so superconducting anti-solenoid is need to minimize the effect of the solenoid field on the beam. In addition, high strength superconducting sextupole magnets are also required. In this paper, the layout and conceptual design of CEPC Interaction Region superconducting magnets are described, and the R&D plan is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEOBB02  
About • paper received ※ 23 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB05 CEPC Collider and Booster Magnets 247
 
  • M. Yang, F.S. Chen, W. Kang, X.J. Sun, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Funding: Work supported in part by the Yifang Wang scientific Studio of the Ten Thousand Talents Project.
A Circular Electron Positron Collider (CEPC) with a circumference of about 100 km, a beam energy up to 120 GeV is proposed to be constructed in China. Most mag-nets for CEPC Booster and Collider ring are conventional magnets. The quantities of the magnets are large, so the cost and power consumption are two of the most im-portant issues for the magnet design and manufacturing. The dual aperture dipole and quadrupole magnet with low current high voltage are used in the collider ring. While in the booster the dipole magnet works at very low field, so a low packing factor dipole magnet or a coil type without iron design will be investigated and chosen. In this paper, the conceptual design of the CEPC main mag-nets are in detailed and the R&D plan is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEOBB05  
About • paper received ※ 19 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)