Author: Kamitani, T.
Paper Title Page
TUPAB03 Overall Injection Strategy for FCC-ee 131
 
  • S. Ogur, F. Antoniou, T.K. Charles, B. Härer, B.J. Holzer, Y. Papaphilippou, L. Rinolfi, T. Tydecks, F. Zimmermann
    CERN, Geneva, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • A.M. Barnyakov, A.E. Levichev, P.V. Martyshkin, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • O. Etisken
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • K. Furukawa, N. Iida, T. Kamitani, F. Miyahara
    KEK, Ibaraki, Japan
  • E.V. Ozcan
    Bogazici University, Bebek / Istanbul, Turkey
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The Future Circular electron-positron Collider (FCC-ee) requires fast cycling injectors with very low extraction emittances to provide and maintain extreme luminosities at center of mass energy varying between 91.2-385 GeV in the collider. For this reason, the whole injector complex table is prepared by putting into consideration the minimum fill time from scratch, bootstrapping, transmission efficiency as well as store time of the beams in synchrotrons to approach equilibrium emittances. The current injector baseline contains 6 GeV S-band linac, a damping ring at 1.54 GeV, a prebooster to accelerate from 6 to 20 GeV, which is followed by 98-km top up booster accelerating up to final collision energies. Acceleration from 6 GeV to 20 GeV can be provided either by Super Proton Synchrotron (SPS) of CERN or a new synchrotron or C-Band linac, distinctively, which all options are retained. In this paper, the current status of the whole FCC-ee injector complex and injection strategies are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPAB03  
About • paper received ※ 20 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB07 Commissioning of Positron Damping Ring and the Beam Transport for SuperKEKB 152
 
  • N. Iida, Y. Funakoshi, H. Ikeda, T. Ishibashi, H. Kaji, T. Kamitani, M. Kikuchi, T. Kobayashi, H. Koiso, F. Miyahara, T. Mori, Y. Ohnishi, Y. Seimiya, H. Sugimoto, H. Sugimura, R. Ueki, Y. Yano, D. Zhou
    KEK, Ibaraki, Japan
 
  The Positron Damping Ring (DR) for SuperKEKB successfully started its operation in February 2018, and the commissioning was continued until the end of SuperKEKB Phase 2 in July without serious troubles. This paper describes achievements of the beam commissioning of injection and extraction lines (LTR and RTL) between the LINAC and DR. In the LTR commissioning, the positron beam with high emittance, wide energy spread, and high charge were transported and injected into the DR. In the RTL commissioning, special cares were necessary to preserve the low emittance. The observed emittance growth in the RTL was not a problem for Phase 2, but it should be resolved in the coming Phase 3. In this paper, brief results of the commissioning of the DR is also reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPAB07  
About • paper received ※ 20 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)