Author: Furukawa, K.
Paper Title Page
TUPAB01 KEKB Injection Developments 121
 
  • K. Furukawa
    KEK, Ibaraki, Japan
 
  The e/e+ SuperKEKB collider is now under commissioning. As e/e+ beam injection for SuperKEKB greatly depends on the efforts during the previous KEKB project, the injection developments during KEKB are outlined as well as the improvements towards SuperKEKB. When KEKB was commissioned, approximately ten experimental runs per day were performed with e/e+ injections in between. As another collider PEP-II had a powerful injector SLAC, the KEKB injector had to make a few improvements seriously, such as injection of two bunches in a pulse, continuous injection scheme, eventual simultaneous top-up injections, as well as many operational optimizations. The design of SuperKEKB further required the beam quality improvements especially in the lower beam emittance for the nano-beam scheme, as well as in the beam current for the higher ring stored current and the shorter lifetime.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPAB01  
About • paper received ※ 20 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB03 Overall Injection Strategy for FCC-ee 131
 
  • S. Ogur, F. Antoniou, T.K. Charles, B. Härer, B.J. Holzer, Y. Papaphilippou, L. Rinolfi, T. Tydecks, F. Zimmermann
    CERN, Geneva, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • A.M. Barnyakov, A.E. Levichev, P.V. Martyshkin, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • O. Etisken
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • K. Furukawa, N. Iida, T. Kamitani, F. Miyahara
    KEK, Ibaraki, Japan
  • E.V. Ozcan
    Bogazici University, Bebek / Istanbul, Turkey
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The Future Circular electron-positron Collider (FCC-ee) requires fast cycling injectors with very low extraction emittances to provide and maintain extreme luminosities at center of mass energy varying between 91.2-385 GeV in the collider. For this reason, the whole injector complex table is prepared by putting into consideration the minimum fill time from scratch, bootstrapping, transmission efficiency as well as store time of the beams in synchrotrons to approach equilibrium emittances. The current injector baseline contains 6 GeV S-band linac, a damping ring at 1.54 GeV, a prebooster to accelerate from 6 to 20 GeV, which is followed by 98-km top up booster accelerating up to final collision energies. Acceleration from 6 GeV to 20 GeV can be provided either by Super Proton Synchrotron (SPS) of CERN or a new synchrotron or C-Band linac, distinctively, which all options are retained. In this paper, the current status of the whole FCC-ee injector complex and injection strategies are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-TUPAB03  
About • paper received ※ 20 October 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)