Author: Bai, S.
Paper Title Page
MOYAA05 The Status of CEPC 30
 
  • C.H. Yu, S. Bai, T.J. Bian, X. Cui, J. Gao, H. Geng, D.J. Gong, D. Ji, Y.D. Liu, C. Meng, Q. Qin, D. Wang, N. Wang, Y. Wang, Y. Wei, J.Y. Zhai, Y. Zhang, H.J. Zheng, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  Circular electron-positron collider (CEPC) is a dedi-cated project proposed by China to research the Higgs boson. The collider ring provides e+ e collision at two interaction points (IP). The luminosity for the Higgs mode at the beam energy of 120GeV is 3*1034 cm-2s-1 at each IP while the synchrotron radiation (SR) power per beam is 30MW. Furthermore, CEPC is compatible with W and Z experiments, for which the beam ener-gies are 80 GeV and 45.5 GeV respectively. The lumi-nosity at the Z mode is higher than 1.7*1035 cm-2s-1 per IP. Top-up operation is available during the data taking of high energy physics. The status of CEPC will be introduced in detail in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-MOYAA05  
About • paper received ※ 23 September 2018       paper accepted ※ 08 March 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXBA05 Machine Detector Interface for CEPC 217
 
  • S. Bai, J. Gao, H. Geng, D. Wang, Y. Wang, C.H. Yu, Y. Zhang, Y.S. Zhu
    IHEP, Beijing, People’s Republic of China
 
  The Circular Electron Positron Collider (CEPC) is a proposed Higgs factory with center of mass energy of 240 GeV to measure the properties of Higgs boson and test the standard model accurately. Machine Detector Interface (MDI) is the key research area in electron-positron colliders, especially in CEPC, it is one of the criteria to measure the accelerator and detector design performance. In this paper, we will introduce the CEPC superconducting magnets design, solenoid compensation, synchrotron radiation and mask design, detector background, collimator, mechanics assembly etc on, which are the most critical physics problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-eeFACT2018-WEXBA05  
About • paper received ※ 29 September 2018       paper accepted ※ 19 February 2019       issue date ※ 21 April 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)