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Abstract

Electron beam interaction with the monochromatic laser

radiation produces scattered photons and electrons due to the

Compton effect. Both types of scattered particles carry the

information about the polarisation (if any) and the energy of

initial electrons in the beam. In this report we focus on the

properties of the scattered electrons. After a bending magnet

these electrons leave the beam and their X-Y space distri-

bution is measured by the 2D pixel detector. We show that

if the electron beam vertical emittance is sufficiently small,

the shape of this distribution is an ellipse. Measurement

of the length of the X-axis of this ellipse allow to calibrate

accurately the bending field integral seen by the beam. The

distribution of the electrons within the ellipse depends on

the initial beam polarisation, allowing to measure the its

degree and direction. So we propose a universal Compton

polarimeter with a unique feature of precise calibration of

the LEP-style beam energy spectrometer. The approach is

thought to be useful for the future high-energy e+/e- collid-

ers, while the feasibility tests may be performed on existing

accelerators.

INTRODUCTION

An illustration for the process of Inverse Compton Scat-

tering (ICS) is presented in Fig. 1:
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= γmc2
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Figure 1: Inverse Compton scattering: the thickness of the

arrows qualitatively represents the energies of the particles.

Considering the case when ε0, ε,ω ≫ ω0 let’s introduce

the scattering parameter

u =
ω

ε
=

θε

θω
=

ω

ε0 − ω
=

ε0 − ε
ε
, (1)
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where u ∈ [0, κ] and κ = 4ω0ε0/mc2 is twice the ratio

between the photon and electron energies in the electron rest

frame. The photon and electron scattering angles are:

ηω ≡ γθω =
√

κ

u
− 1; ηε ≡ γθε = u

√

κ

u
− 1. (2)

Further we consider an ICS of monochromatic laser radi-

ation on the beam of ultra-relativistic electrons. ICS cross

section is sensitive to the polarisation of initial electron and

photon beams:

dσ

du dϕ
=

r2
e

κ(1 + u)2
× (3)

×
{(

2 +
u2

1 + u
+ 4

u

κ

[u

κ
− 1

] [
1 − ξ⊥ cos(2(ϕ − ϕ⊥))

])
+

+ξ�

(

ζ ‖
u(u + 2)(κ − 2u)

κ(1 + u)
− ζ⊥

2u2
√
κ/u − 1

κ(1 + u)
sin ϕ

)}

,

where

• ϕ is the azimuthal angle of scattered electron relative

to horizon,

• ξ⊥ and ϕ⊥ are the degree and direction of laser beam

linear polarisation,

• ξ� is the degree and sign of laser circular polarisation,

• ζ ‖ and ζ⊥ are the signs and degrees of longitudinal and

vertical transverse electron beam polarisations.
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Figure 2: ICS cross section for small and large κ. The dashed

lines illustrate the influence of ξ�ζ ‖ .

Experiments with polarised e± beams were performed at

many facilities ( ACO, VEPP-2, SPEAR, DORIS, TRISTAN,

VEPP-4, CESR, LEP, HERA...). Compton polarimeters usu-

ally dealt with scattered photons. General layout of ICS
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Figure 3: The general layout of ICS experiments.

experiments is shown in Fig. 3. At higher electron energies

the divergence of γ-beam is small, high energy SR pho-

tons appear, etc. So it is reasonable (like ILC) to look at

the scattered electrons. Maximum electron scattering an-

gle: max(θε ) = 2ω0/m, see Eq. (2). It means that with

ω0 =2.33 eV one has max(θε ) ≃ 10 µrad. In order to dis-

tinguish kinematics of electrons at this angular range, the

beam angular spread σ′y =
√

ǫ y/βy should be much smaller

than max(θε ). For example, the parameters ǫ y=100 pm and

βy=100 m gives σ′y = 1 µrad. It’s also important that the

dimension of scattered electrons angular distribution does

not depend on beam energy.

SCATTERED ELECTRONS AFTER A

BENDING DIPOLE

An energy of a scattered electron depends on u as:

ε(u) = ε0/(1 + u). (4)

This electron will be bent to the angle

θs =
c
∫

Bdl

ε0

(1 + u), (5)

where
∫

Bdl is the field integral along the dipole (assuming

it does not depend on electron energy). Let

ηs ≡ γθs = η0 + uη0, (6)

where η0 =

∫

Bdl/BcŻc and BcŻc is the product of

Schwinger field and the Compton wavelength of an elec-

tron: BcŻc =
mc

e
≃ 1.7 × 10−3 [T m]. With the scattered

electron angles defined as


ηx ≡ ηs − η0 = uη0 + u

√
κ/u − 1 cos ϕ

ηy = u
√
κ/u − 1 sin ϕ

(7)

one gets the equation:

(ηx − uη0)2
+ η2

y = u(κ − u). (8)

Equation 8 describes surface of determination for the ICS

cross section, shown in Fig. 4 for κ = 2 and various η0.
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Figure 4: ICS surface in (u, ηx , ηy ) space.
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The scattered electrons distribution in the ηx , ηy plane can

be obtained my Monte Carlo method, using Eq. (3) for game

and Eq. (7) for tracking the scattered electrons through a

dipole magnet. In Fig. 5 the results of such MC simulations

are presented, and the shape of the ICS electrons in the

ηx , ηy plane is an ellipse with certain dimensions. These

dimensions, expressed in radians, are:

Oy =
4ω0

m
, Ox =

4ω0

m

√

1 + η2
0

(9)

Figure 5: The scattered electrons distribution in ηx , ηy plane.

κ = 3.26 when ε0 = 45.5 GeV and ω0 = 4.68 eV. P is the

polarisation vector and does not matter here. η0 = 500

means that the electron beam was turned to an angle of

500 · 1/γ. Electron beam is located at ηx = ηy = 0.

In Ref. [1] there is a study about application of silicon pixel

detector to measure the distribution of scattered electrons,

similar to one shown in Fig. 5, in order to determine the

transverse polarisation of an electron beam in ILC. Based on

this work is our assumption that there are existing apparatus

allowing to measure such a distribution, and we’re not going

into details about it. In this report we want to show that the

analysis of this distribution allows to measure whatever pos-

sible polarisation as well as to perform a precise calibration

of magnetic spectrometer.

Our analysis is based on the procedure of fitting the 2D

distribution of scattered electrons by the theory function.

The cross section itself, according to Eq. (3), consists of tree

parts. The new variables for the ICS cross section will be x

and y, obtained by transformation of an ellipse, Eq. (9), to a

circle where x = y = 0 is the centre of the circle. After some

analytical calculations, Fig. 6 presents their results in graph-

ical way. Three components of ICS cross section, according

to Fig. 6 and its caption, areU , L and T . The distribution

of scattered electrons in x, y coordinates is expressed by the

convolution of

a) the cross section

f (x, y) = U + ξ�(ζ ‖L + ζ⊥T ) (10)

b) transverse distributions (σx ,σy ) of beam electrons.
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Figure 6: From top to bottom: three ICS cross section com-

ponents: U - unpolarised (black), L - 100% longitudinal

(red), T 100% transverse vertical (blue) e−spin polarisation.

Vertical scale (arbitrary units) is the same for all of the plots.

The horizontal (x) and vertical (y) dimensions of the com-

ponents U , L and T in Eq. (10) could be scaled to any

real values of ω0 and η0 according to Eqs. (9). The only

value, depending on the beam energy ε0 is the value of the

cross section at each point in Fig. 6. This dependence is

relatively weak, see Fig. 2, so 10% accuracy in beam energy

knowledge is more than enough for the fit success.
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Figure 7: The MC distribution of scattered electrons with the fit function and fit results.

The example of fitted distribution is presented on Fig. 7.

The initial conditions are:

• The horizontal size of an ellipse fixed by MC generator

Ox equals κη0 = 3.26 · 500 = 1630.

• P = [0,0,0,0.5] is the polarisation vector meaning that

ξ⊥ = ϕ⊥ = ξ�ζ ‖ = 0 and ξ�ζ⊥ = 0.5.

• The histogram has 100 bins in ηx and 50 bins in ηy . In

our consideration this is an equivalent of the number

of detector pixels.

• The 107 scattered electrons were generated.

• Fit range in ηx is starting from ηx = 200, assuming

that the smaller values of ηx are not available for mea-

surement cause these electrons propagate too close

to the beam. The electron beam itself is located at

ηx = ηy = 0, see Fig. 3.

• the transverse horizontal an vertical sizes of the elec-

tron beam are described by Gaussian distributions with

parameters σx = 20 and σy = 0.1 in the same units as

η0, ηx and ηy .

The fit results are shown in the parameters table in Fig. 7.

The essential results are:

• P‖ ≡ ξ�ζ ‖ = 0.0007 ± 0.0009.

• P⊥ ≡ ξ�ζ⊥ = 0.501 ± 0.002.

• Ox ≡ X2 − X1 = (1630.02 ± 0.08) − (0.110 ± 0.151).

The polarisation parameter P⊥ “was measured” with 0.4%

accuracy. Note that X1 is the beam position, which in prin-

ciple can be also measured by beam position monitors, see

Fig. 3. The relative error ∆X2/(X2 − X1) ≃ 5 · 10−5 in our

example is twice better than the ∆X1/(X2 − X1) ≃ 10−4.

This is because the detector can not measure the part of the

scattered electrons distribution close to the main beam, i. e.,

again, the fitting range in ηx is started at ηx = 200. We

claim again that the Ox measurement is the measurement

of the parameter η0 =

∫

Bdl/BcŻc , i. e. the bending field

integral. From the statistical point of view such measure-

ment is evidently much more efficient to be compared to

one-dimensional measurements of ηx only. The relative

error in Ox measurement obviously depend on the number

of detected particles (statistics) and the ratio between the

overall size of the distribution and number of histogram

bins (i. e. detector pixels). In this sense, the absolute value

of κη0 = 1630 in our example, does not matter at all, the

similar accuracy can be obtained for any other case.

The difference in trajectories of scattered and un-
scattered electrons

In all of the above considerations we have implicitly be-

lieved that the beam electrons and the scattered electrons

are bent by the dipole in such a way, that all of these elec-

trons experience the same bending force defined by the only

one parameter η0 =

∫

Bdl/BcŻc . However this is only

an approximation, and electrons with different energies are

propagating with individual trajectories. It is very important

to understand the accuracy of this approximation. To do this,

let us consider the possible difference of η0 for the beam

electrons with energy ε0, and the scattered electrons with

minimal energy εmin = ε0/(1 + κ). The bending radii of

these electrons in the same bending field are related by:

Rmin = R0/(1 + κ). (11)

In Fig. 8 the geometry of bending dipole is presented. By
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Figure 8: Bending of electrons with different energies. Black

upper arc – the trajectory of en electron with ε0 energy, red

lower arc – the trajectory of en electron with εmin energy.

simple trigonometry calculations one obtains:

S0 = 2R0arcsin

[
L

2R0

]
, (12)

S = 2Rminarcsin



√
L2
+ ∆X2

2Rmin


, (13)

where

∆X =

√

R2
min
−
[

LRmin

2R0

]2

−

√

R2
min
−
[
L − LRmin

2R0

]2

.

We are going to compare the length of the trajectories

∆S = (S − S0)/2S0 and the maximum transverse distance

∆X between trajectories in the spectrometer, illustrated by

Fig. 9.

L20 m 20 m

Δ
X

θ

D

Δ
θ

Figure 9: Sketch of spectrometer.

Table 1: Calculations by Eqs. (12, 13)

θ ∆θ L ∆X ∆S/S D

mrad mrad m mm mm

1 1.53 10 3.83 2.59 · 10−7 46

2 3.06 10 7.65 1.04 · 10−6 92

1 1.53 5 1.91 2.59 · 10−7 46

2 3.06 5 3.83 1.04 · 10−6 92

The results of calculations for various parameters are pre-

sented in Table 1, where D is the horizontal size of the

distribution of scattered electrons at the detector. From Ta-

ble 1 we see that our main approximation about the equality

of η0 for all electrons could be make rather strict by appro-

priate design of the spectrometer. It is also important to

mention that

∆S/S ∝ κθ, ∆X ∝ κθL, D ∝ κθLarm .

Since everything is proportional to κθ, our approximation is

valid for any electron beam energy range. At high electron

beam energies, implying circular machines, the value of θ is

naturally small and the value of κ is naturally large. At low

energies we can afford larger θ and will have smaller κ.

CONCLUSION

Inverse Compton scattering of laser radiation is a cur-

rently available reliable method for beam polarisation [2, 3]

and energy [4–6] determination. The future high energy

lepton colliders require polarised beams and polarimetry, in-

ter alia for application of resonant depolarisation technique

for precise beam energy calibration at circular machines.

Analysis of 2D-distribution of ICS electrons allows to mea-

sure beam polarisation degree and direction as well as to

provide a unique way for accurate calibration of the
∫

Bdl

exactly along a beam trajectory in a conventional magnetic

spectrometer. Such a spectrometer was installed at LEP [7]

and no doubt it should be implemented at future high-energy

colliders, either linear or circular. The proposed approach

has no limitations in beam energy, the only thing it requires

is a small value of vertical emittance of the electron beam.

Now it’s a good time to start the proof-of-principle project at

one of the existing low-emittance facilities. Another subject

for further studies should be a possibility to measure the

position of backscattered photons with high accuracy, see

Fig. 3. This seems to be not an easy task, but it allows to

build the completely independent beam energy measurement

approach for arbitrary beam energies.
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