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Abstract
Characterization of a vacuum chamber impedance is nec-

essary to estimate stability conditions of a particle beam

motion, to find a limit of the beam intensity and characteris-

tic times of single-bunch and multi-bunch instabilities. For

a new accelerator project, minimization of the impedance

is now the mandatory requirement for the vacuum chamber

design. For an accelerator in operation, the impedance can

be measured experimentally using various beam-based tech-

niques. The beam-impedance interaction manifests itself in

measurable beam parameters, such as betatron tunes, closed

orbit, growth rates of instabilities, bunch length and syn-

chronous phase. The beam-based techniques developed for

measurement of the longitudinal and transverse impedance

are discussed, including theoretical basics and experimental

results.

WAKE FUNCTIONS AND IMPEDANCES
In a theory of collective effects, the interaction of a parti-

cle beam with electromagnetic fields induced by the beam

itself is described in terns of wake functions. These elec-

tromagnetic fields are called wake fields because they never

propagate ahead of a relativistic particle. The wake function

is defined as a normalized integral of the Lorentz force that

acts on a test particle moving behind a leading particle which

excites the wake fields. To analyze the beam stability in most

practical cases, it is enough to consider only monopole lon-

gitudinal W‖ and dipole transverse W⊥ wake functions. The

longitudinal wake function is obtained by integrating the

electric field component Ez , which is parallel to the velocity

v (|v| = c) of the particles moving on the same trajectory [1]:

W‖(τ) = − 1

q

∞∫
−∞

Ez(t, τ) dt , (1)

where q is the charge of leading particle, τ = s/c, s is the

distance between the leading and trailing particles, c is the

speed of light. The dipole transverse wake function is de-

termined similarly to the longitudinal one as an integral of

transverse electromagnetic forces normalized by the dipole

moment qr of the leading particle (r is the transverse offset);

it is a vector with horizontal and vertical components:

W⊥(τ) = − 1

q r

∞∫
−∞

[E(t, τ) + v ×B(t, τ)]⊥ dt . (2)

The longitudinal and transverse wake functions are related

to each other by the Panofsky-Venzel theorem [1, 2].
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For a beam with arbitrary charge distribution, its inter-

action with wake fields is described by the wake potential

V , which is a convolution of the wake function W and the

longitudinal charge density λ(t):

V(τ) =
∞∫

0

W(t)λ(τ − t)dt , (3)

where λ(t) is normalized as
∞∫

−∞
λ(t)dt = 1 .

In the frequency domain, each part of the vacuum chamber

is represented by a frequency-dependent impedance. Lon-

gitudinal Z ‖ and transverse Z⊥ impedances are defined as

Fourier transforms of the corresponding wake functions:

Z ‖(ω) =
∞∫

−∞
W‖(τ) e−iωτ dτ ,

Z⊥(ω) = i
∞∫

−∞
W⊥(τ) e−iωτ dτ . (4)

The main contributors to the total impedance of the vac-

uum chamber are: finite conductivity of the walls (resistive-

wall impedance), variations of the chamber cross section,

high-order modes of accelerating RF cavities, electrostatic

pickup-electrodes, strip-lines, flanges, bellows, synchrotron

radiation ports, etc. If there is no interference of the wake

fields excited by the beam in different components of the vac-

uum chamber (the components are far away from each other

or the wake fields are rapidly damping), the impedances are

additive at any frequency. In this case, the total impedance

of the vacuum chamber can be represented as a sum of

impedances of its components. For almost any component

of a vacuum chamber, the impedance can be approximated

by equivalent resonators with proper resonance frequencies,

shunt resistances and quality factors. Since a narrowband os-

cillation mode is more long-living than the broadband mode,

the beam interaction with the narrowband impedance and

with the broadband one can be analyzed separately. We can

assert that the narrowband impedance leads to the bunch-by-

bunch interaction and can result in multi-bunch instabilities,

whereas the broadband impedance leads to the intra-bunch

interaction and can cause single-bunch instabilities. The

beam stability is analyzed using the computed impedance or

its simplified representation by resonators and resistive-wall

impedance calculated analytically.

To compute the impedance of complex components of vac-

uum chambers, 3D finite-difference simulation codes [3, 4]

are used. These codes solve Maxwell equations with the

boundary conditions determined by the chamber geometry.

The fields are excited by a bunched beam with pre-defined

charge distribution, usually Gaussian. The simulation code
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output is a wake potential (3) which is a convolution of the

wake function and the longitudinal bunch profile. Taking

into account that the convolution of two time-domain func-

tions is equivalent to the product of their Fourier transforms,

the impedance is calculated as

Z(ω) = Ṽ(ω)
λ̃(ω) , (5)

where Ṽ and λ̃ are the Fourier transforms of the wake po-

tential and the longitudinal charge density, respectively. So

the bandwidth of the impedance derived from the simulated

wake potential is limited by the bunch spectrum width which

is inversely proportional to the bunch length defined for the

simulation. The mesh size of the solver is essential, it should

be small enough to get reliable results for a given bunch spec-

trum. For a typical bunch length of few millimeters, full 3D

simulation of wake fields in a big and complex structure is

quite difficult because huge memory and processor time are

required.

The beam-impedance interaction manifests itself in sev-

eral effects of beam dynamics, some of these effects can

be measured quite precisely using modern beam diagnostic

instruments and measurement techniques.

LONGITUDINAL BROADBAND
IMPEDANCE

For a beam-based measurement of longitudinal broadband

impedance, we need to understand what can be measured.

The measurable effects such as current-dependent bunch

lengthening, synchronous phase shift, and energy spread

growth due to microwave instability are dependent on in-

tegral parameters combining the impedance and the bunch

spectrum. These parameters are the effective impedance

and the loss factor. The normalized effective impedance

(Z ‖/n)eff is defined as

(
Z ‖
n

)
eff

=

∞∑
p=−∞

Z ‖(ωp) ω0

ωp
hl(ωp)

∞∑
p=−∞

hl(ωp)
, (6)

where Z ‖(ω) is the frequency-dependent longitudinal

impedance, n = ω/ω0 is the revolution harmonic number,

ωp = pω0 + lωs, ω0 is the revolution frequency, ωs is the

synchrotron frequency,

hl(ω) = (ωσt )2l e−ω
2σ2

t , (7)

is the spectral density of l−th Hermite mode (for a Gaus-

sian bunch), σt = σz/c, σz is the bunch length. If the low-

frequency longitudinal impedance is assumed as inductive,

the normalized impedance Z ‖/n is frequency-independent.

The coherent loss ΔE of the beam energy caused by the

beam-impedance interaction is

ΔE = k ‖q2 , (8)

where q is the bunch charge, k ‖ is the loss factor

k ‖ =
ω0

2π

∞∑
p=−∞

Z ‖(ωp)h(ωp) = ω0

π

∞∑
p=−∞

ReZ ‖(ωp)h(ωp) ,
(9)

h(ω) = λ̃(ω)λ̃∗(ω) is the bunch power spectrum,

h(ω) = e−ω2σ2
t for a Gaussian bunch. The second

equality in (9) is valid because ReZ ‖(−ω) = ReZ ‖ω) and

ImZ ‖(−ω) = −ImZ ‖(ω). If σtω0 � 1, the sum can be

replaced with the integral:

k ‖ =
1

π

∞∫
−∞

ReZ ‖(ω) h(ω)dω . (10)
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Figure 1: Longitudinal impedance and bunch spectra.

Figure 1 shows an example of the longitudinal impedance

calculated by a 3D Maxwell equation solver CST Particle

Studio together with a broadband resonator model and pure

inductive impedance (Z ‖/n = const). The Gaussian bunch

spectra are also shown for two bunch lengths: σz = 3 mm

and σz = 9 mm. The measurable integral parameters, effec-

tive impedance and loss factor calculated using the simulated

impedance and two simplified models are summarized in

Table 1.

Table 1: Longitudinal Effective Impedance and Loss Factor

σz = 3 mm σz = 9 mm

(Z ‖/n)eff k ‖ (Z ‖/n)eff k ‖
Ω V/pC Ω V/pC

Simulation 0.21 82 0.24 2.2

BBR 0.20 77 0.24 2.9

Inductive 0.25 0.25

As one can see, the measurable single-bunch effects re-

sulted from the beam interaction with a rather complex

impedance such as the example shown in Figure 1 can be

described with reasonable accuracy using a simple broad-

band resonator model. For longer bunches, even the simplest

inductive model could be acceptable.

The reactive part of normalized effective impedance

Im(Z ‖/n)eff can be estimated by measuring the r.m.s. bunch
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length σt as a function of beam current Ib . The bunch length

can be directly measured using a streak-camera, a dissec-

tor tube or, indirectly, by measuring the bunch spectrum

width from a button-type pickup electrode. Interaction of

a bunched beam with broadband impedance deforms the

longitudinal bunch profile λ(t), which is Gaussian for a zero-

intensity bunch. At small beam currents, the energy spread

of a relativistic electron beam is independent of its intensity

and λ(t) as a function of the average bunch current Ib can

be described by the Haissinski integral equation [5]. The

Haissinski equation can be solved numerically for a certain

impedance model (i.e. broadband resonator) and the model

parameters can be find by fitting the measured beam profile

with the equation solution [6].

For a positive momentum compaction α, the intensity-

dependent deformation of the longitudinal bunch profile λ(t)
causes the bunch lengthening, which can be approximately

described by a cubic equation [7]:

(
σt
σt0

)3
− σt
σt0
=

Ib α√
2π ν2s (ω0σt0)3 E/e

Im

(
Z ‖
n

)
eff

. (11)

Formula (11) has been derived for the bunch lengthening of

a relativistic electron or positron bunch caused by potential

well distortion below the microwave instability threshold.

The microwave instability results from the interaction be-

tween a large number of bunch oscillation modes growing

and damping with their characteristic time constants. If the

impedance can be considered as inductive, then to estimate

the peak value of the threshold current Imwi
p , the simple cri-

terion [8] is applicable:

Imwi
p =

α E/e��Z ‖/n
��
(
Δp
p

)2

FWHM

, (12)

where
Δp
p =

γ2

γ2−1
ΔE
E is the momentum spread, which is equal

to the energy spread ΔE/E for ultra-relativistic (γ � 1)

beams.

The dynamics of longitudinal motion above the mi-

crowave instability threshold is characterized by the en-

ergy spread growth and a turbulent bunch lengthening with

the beam current increase. The relative energy spread

δ ≡ σE/E can be estimated from a measured transverse

beam size which is determined by the combination of beta-

tron and synchrotron contributions:

σ2
x = βxεx + (ηxδ)2 , (13)

where βx is the beta function, εx is the transverse emittance,

ηx is the dispersion. The transverse beam size is usually

measured by a visible light monitor or a pin-hole X-ray

camera located in a dispersive section.

Figure 2 shows an example of the measured bunch length

(upper plot) and energy spread (lower plot) as functions of

the beam current, the measurement was done at APS [9]. As

one can see, it is practically impossible to find the microwave

instability threshold from the bunch lengthening although
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Figure 2: Measured bunch length (upper plot) and energy

spread (lower plot) as functions of the beam current.

it is clearly visible on the energy spread graph, this is also

confirmed by numerical simulations [10]. This means that

formula (11 ) could be useful to fit the bunch lengthening

even if the beam current exceeds the microwave instability

threshold.

The coherent energy loss is compensated in the accelerat-

ing RF cavities every beam turn, as well as the energy loss

caused by synchrotron radiation. The coherent energy loss

leads to the current-dependent shift Δφs of the synchronous

phase, which can be derived from the energy balance of the

bunch:

Δφs =
Ibk ‖

f0VRF cos φs0

, (14)

where VRF is the RF voltage, φs0 is the synchronous phase

at zero current. The phase shift is proportional to the beam

current Ib and the loss factor k ‖ , which in turn depends on

the bunch length growing with the beam current, so the phase

shift as a function of the beam current is non-linear. For

small beam current, we can neglect the bunch lengthening

and, with this approximation, the phase shift Δφs can be

assumed proportional to the zero-current loss factor.

The current-dependent shift of synchronous phase can

be measured directly using synchrotron light diagnostics

(streak camera, dissector tube) or RF system diagnostics. To

reduce the systematic error resulted from the drift or jitter of

the diagnostic instruments, the two-bunch technique is use-

ful. The longitudinal profiles of two bunches are measured

simultaneously, one bunch has variable intensity, whereas
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the other bunch with a fixed intensity is the reference. Fig-

ure 3 shows an example of two bunch profiles measured by

a streak camera.

Figure 3: Reference bunch technique: bunch profile mea-

sured by a streak camera.

The other measurement technique is based on measuring

the closed orbit deviation caused by the coherent energy

loss [11]. If the dispersion and its derivation is zero in

the accelerating RF cavities, the orbit deviation x(s) can be

assumed proportional to the dispersion η(s):
x(s) ≈ η(s)δc(s) . (15)

The relative energy loss per particle δc ≡ ΔE/E is dis-

tributed along the ring as

δc(s) = q
E/e

s∫
sRFC

k ′
‖(ζ)dζ , (16)

and the orbit deviation caused by this energy loss, when the

beam current Ib = q f0 is changed by ΔIb , is:

Δx(s) ≈ η(s) ΔIb
f0 E/e

s∫
sRFC

k ′
‖(ζ)dζ , (17)

where k ′
‖ is the specific loss factor per length unit of the beam

orbit, sRFC is the position of the accelerating RF cavity. The

loss factor k ‖ can be estimated by measuring the closed orbit

deviation as a function of the beam intensity [12]:

k ‖ =
f0
ΔIb

E
e
Δx(s)
η(s) . (18)

If the RF cavities are located in several places, this method

can be used to measure the longitudinal loss factor of a

section between the cavities. For every modern synchrotron,

high-precision beam position monitors (BPMs) are now a

standard component of beam diagnostics, so the beam orbit

can be measured very precisely.

An example of the measured deviations of the horizon-

tal and vertical orbits depending on the beam current is

presented in Figure 4 [13]. Before the measurement, the

orbit was corrected globally to minimize the influence of

the transverse impedance. The intensity-dependent errors of

the BPMs introduce a systematic error in the measurement

results. We can assume that this error is of the same order for

both horizontal and vertical planes. So, taking the vertical

orbit deviation, which is less than 10% of the horizontal one

(see Figure 4), and assuming zero dispersion in the vertical

plane, we can conclude that the BPM-caused errors does not

exceed 10%.
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Figure 4: Orbit deviation as a function of beam current.

TRANSVERSE BROADBAND
IMPEDANCE

For the transverse broadband impedance, the measurable

effects are current-dependent shift of betatron tunes and

rising/damping time of chromatic head-tail effect. Similar to

the longitudinal impedance case, these effects are dependent

on integral parameters combining the impedance and the

bunch spectrum: transverse effective impedance and dipole

kick factor. The transverse effective impedance Z⊥eff is

defined as

Z⊥eff =

∞∑
p=−∞

Z⊥(ωp)hl(ωp − ωξ )
∞∑

p=−∞
hl(ωp − −ωξ )

, (19)

where Z⊥(ω) is the frequency-dependent transverse

impedance, ωp = pω0 + ωβ + lωs, hl(ω) is the spec-

tral density of l−th Hermite mode (7), ωξ = ξω0/α,

ξ = dνβ/(dE/E) is the chromaticity, ωβ = νβω0 is the be-

tatron frequency.
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The transverse dipole kick Δx ′ caused by the beam-

impedance interaction is

Δx ′ =
q

E/e
k⊥x , (20)

where x is the beam transverse offset, k⊥ is the dipole kick

factor

k⊥ =
ω0

2π

∞∑
p=−∞

Z⊥(ωp)h(ωp) = ω0

π

∞∑
p=−∞

ImZ⊥(ωp)h(ωp) ,
(21)

h(ω) is the bunch power spectrum. If σtω0 � 1, the sum

can be replaced with the integral:

k ‖ =
1

π

∞∫
−∞

ImZ⊥(ω) h(ω)dω . (22)
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Figure 5: Transverse impedance and bunch spectra.

Figure 5 shows an example of the transverse impedance:

result of wake field simulation, a broadband resonator model,

and a pure inductive impedance (Z⊥ = const). The Gaus-

sian bunch spectra are also shown for two bunch lengths:

σz = 3 mm and σz = 9 mm. The measurable integral pa-

rameters, transverse effective impedance and dipole kick

factor calculated using the simulated impedance and the sim-

plified models are summarized in Table 2. As one can see,

the measurable transverse single-bunch effects can be also

described using the simplified models such as broadband

resonator or pure inductive impedance for longer bunches.

Table 2: Transverse Effective Impedance and Kick Factor

σz = 3 mm σz = 9 mm

Z⊥eff k⊥ Z⊥eff k⊥
kΩ/m V/(pC m) kΩ/m V/(pC m)

Simulation 101 2836 117 1083

BBR 97 2710 116 1075

Inductive 115 115

Interaction of a bunched beam with short-range wake

fields characterized by the broadband impedance, results in

the transverse mode coupling. The wake fields induced by

the bunch head act on particles of its tail part (a head-tail

effect) and the head and tail of the bunch exchange places

periodically due to synchrotron oscillations. If the chro-

maticity is zero, a fast head-tail instability occurs when the

beam current exceeds a certain threshold. In the frequency

domain, the instability threshold is reached when the coher-

ent (center-of-mass) mode is coupled with the lowest (−1)

head-tail mode. If the chromaticity is non-zero, a chromatic

head-tail effect occurs. The coherent mode damps upon the

positive chromaticity and becomes unstable when the latter

is negative, and the higher-order head-tail modes behave

oppositely. The rising/damping rates decrease rapidly with

the mode number, and the higher-order modes are usually

not dangerous for beam stability, since they are suppressed

by the radiation damping. Since only a few of the lowest

modes are essential, the eigenmode analysis is quite efficient

for study of the head-tail effect. The complex frequency

Ω = ω + i/τ of l-th head-tail mode can be found solving the

eigenvalue problem [14]

det

[(
Ω − ωβ
ωs

− l
)

I − M
]
= 0 , (23)

here ωβ is the unperturbed betatron frequency, τ is the ris-

ing/damping time, I is the unity matrix. The matrix elements

are

Mkk′ = Ib
β

2νsE/e

∞∑
p=−∞

Z⊥(ωp)glk(ωp−ωξ )glk′ (ωp−ωξ ) ,
(24)

where β is the average beta function. The functions glk
characterizing oscillation modes of the Gaussian bunch are:

glk(ω) = 1√
2πk!(|l | + k)!

(
ωσt√

2

)|l |+2k

exp

(
−ω

2σ2
t

2

)
. (25)

If the frequency shift of coherent (0-th) mode is small

compared with the synchrotron frequency ωs, the linear

approximation [14] is applicable:

dΩ
dIb
= i

βZeff⊥
4
√
πσtE/e

. (26)

If the chromaticity is positive, the frequency shift

Δω = ReΩ − ωβ and chromatic damping time τ = 1/ImΩ
of the coherent (l = 0) mode can be obtained by spectral anal-

ysis of beam oscillations registered by a turn-by-turn beam

position monitor. Figure 6 shows the current-dependent

shift of vertical betatron tune νy = ωy/ω0 (upper plot) and

damping rate 1/τy (lower plot) [6]. The measured values are

shown by blue points with errorbars, red lines represent the

eigenvalues of (23) calculated for 3 values of chromaticity

according to the measurements, the green lines represent the

tracking results. The betatron tune graphs corresponding to

different values of chromaticity are manually separated for

better visibility.
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LOCAL IMPEDANCE
Measurement of the betatron phase advance along the ring

allows determining the contributions of different sections of

the vacuum chamber into the coherent shift of betatron tune.

In such a way, one can obtain the azimuthal distribution of

the transverse impedance [12].

Δμ(s) = − ΔIp
8πCE/e

s∫
0

β(ζ) ImZ⊥(ζ) dζ , (27)

where Ip is the peak bunch current (Ip =
√

2π
ω0σt

Ib for a Gaus-

sian bunch), C is the ring circumference. Accuracy of this

technique is determined by the single-turn resolution of the

beam position monitors, the signals of which are used to cal-

culate the betatron phase. A typical coherent betatron tune

shift is of the order of 0.001 per 1 mA of the beam current

and the BPM-to-BPM phase advance is much smaller, so

this technique requires very good turn-by-turn resolution of

BPMs.

The orbit bump technique [15, 16] is more sensitive be-

cause the BPMs are used in the narrowband orbit mode rather

than in the broadband turn-by-turn mode and the noise is

much smaller. This technique is based on the fact that an

off-axis beam passing through the vacuum chamber section

with a non-zero transverse impedance is deflected by the

wake-fields. The beam-impedance interaction results in the

transverse kick x ′ (20) proportional to the bunch charge q
and its transverse position x at the location of the transverse

impedance. If two closed orbits are measured with different

beam intensity, the orbit deviation is:

Δx(s) = Δq
E/e

k⊥x0

√
β(s)β(s0)
2 sin πν

cos (|μ(s) − μ(s0)| − πν) ,
(28)

where x0 is the orbit bump height, s0 is the transverse

impedance location, Δq is the bunch charge variation, ν
is the betatron tune, β is the beta function, and μ is the be-

tatron phase advance. This wave-like orbit deviation can

be measured using beam position monitors, and the wave

amplitude is proportional to the kick factor at the bump

location. To reduce the systematic error caused by intensity-

dependent behavior of the BPM electronics, this error is also

measured and then subtracted. First of all, after the initial

correction of the orbit to zero, two reference orbits x01 and

x02 are measured at the high and low values of beam cur-

rent. Then, after creating the orbit bump, again two orbits

x1 and x2 are measured at the same beam current values. In

the four-orbit combination Δx = (x2 − x1) − (x02 − x01), the

systematic error is eliminated, as well as the bump itself.

Rapid evolution of BPM electronics allows us to improve

much the sensitivity of this technique. Now we can measure

the orbit deviation of the order of several micrometers [17]

compared to 100 micrometers orbit deviation measured at

the very beginning of the bump method development [15],

see examples in Figure 7.
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Figure 7: Measured orbit waves caused by a local impedance.

Upper plot: VEPP-4M, 1998, lower plot: Diamond Light

Source, 2014

To measure the impedance of a vacuum chamber compo-

nent with variable geometry such as beam scrapers or in-

vacuum undulators, both orbit and turn-by-turn techniques

are effective. Using the reference bunch technique and high-

precision BPMs, a contribution of the movable element to
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the total shift of betatron frequency (26) can be measured

quite accurately [18].

TRANSVERSE NARROWBAND
IMPEDANCE

The motion of a multi-bunch train can be expanded in

Fourier series, so we describe the motion in terms of multi-

bunch modes. For a uniform fill pattern, if every RF bucket

is occupied by a bunch with the same bunch current Ib,

M bunches correspond to M modes, where M is the RF

harmonic number. Without bunch-to-bunch interaction all

bunches oscillate independently with the betatron frequency

ωβ . Transverse multi-bunch instability is driven by long-

range wake fields (narrowband impedance), usually trapped

modes in cavity-like strictures in the vacuum chamber or

resistive-wall impedance. If the bunches are coupled by

the wake fields, each bunch oscillates with the frequency

Ω, which becomes complex. For M bunches with finite

length and internal modes, the complex frequency shift

ΔΩ = Ω − ωβ of the mode n is [14]:

ΔΩn = − i
4π

ω0β

E/e
MIb

∞∑
p=−∞

Z⊥(ωpn)hl(ωpn − ωξ ) , (29)

where ωpn = (pM + n)ω0 + ωβ + lωs. The coherent fre-

quency shift and growth rate are ReΔΩ and ImΔΩ, respec-

tively.

Almost all modern synchrotrons are equipped with trans-

verse multi-bunch feedback systems (TMBF). These systems

can be used as powerful beam diagnostic instruments. Us-

ing TMBF, we can excite the mode n by a stripline kicker

driven at the frequency ωpn = (pM + n)ω0 + ωβ , then stop

the excitation and measure free oscillations (damped or anti-

damped) and finally run the feedback to suppress any residual

oscillation.

Figure 7 shows an example of vertical damping rates mea-

sured at Diamond light source [19]. The fit curve is calcu-

lated using formula (29). The resistive-wall impedance is

calculated with the analytical formula

Z rw
y (ω)

L
= (signω + i) Z0δs(ω)

2πb3
G1y , (30)

where δs(ω) is the skin depth

δs(ω) =
√

2c
μrσcZ0 |ω| , (31)

c is the speed of light, μr andσc are the relative permeability

and conductivity of the chamber material, respectively; Z0

is the free space impedance; b is the half-aperture, G1y is

the form-factor for an elliptical vacuum chamber [20]. The

resonance peaks are fitted by narrowband resonators

Z res
⊥ (ω) = ωr

ω

Rs

1 + iQ
(
ω
ωr

− ωr

ω

) , (32)

where Rs is the shunt impedances, ωr is the resonance fre-

quency, and Q is the quality factor. Two of these resonances

("3" and "4" shown in Figure 8) can be attributed to the

in-vacuum undulators. The effect of the undulator gaps

closing was observed on the damping rates including both

geometric impedance and contribution to the resistive wall

impedance. Three other peaks ("1", "2", and "5") can be

likely attributed to the beam position monitors (BPMs), this

conclusion is based on comparison of the resonators fitting

the measured data with the impedance obtained from wake

field simulations.
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Figure 8: Vertical damping rates normalized by the beam

current after subtraction of radiation damping (measured

data in blue, fit in red).

CONCLUSION
Knowledge of impedances is necessary to understand col-

lective effects of beam dynamics in accelerators. The most

significant result of the collective effects is instability of

longitudinal or transverse motion leading to deterioration of

the beam quality or even to beam loss. Studies of collective

effects are important both for designing new accelerators and

for understanding the beam dynamics in the accelerators in

operation. Calculation of impedance budget is an essential

stage of a new accelerator design. There is a limited number

of analytical formulae to calculate impedances of simplest

vacuum chamber components but real vacuum chambers

of modern accelerators usually have a complex geometry.

Practically, finite-difference simulation codes are used for

estimation of the impedance budgets. The problem is that

the wake function is not calculated directly, the simulation

code output is a wake potential which is a convolution of the

wake function with longitudinal bunch profile. So the band-

width of the impedance derived from the simulated wake

potential is limited by the bunch spectrum width which is

usually limited by computing capabilities. The impedance

of an accelerator in operation can be studied experimentally

using beam-based methods because the beam-impedance

interaction manifests itself in various physical effects. The

total frequency-dependent impedance is usually very com-

plex so it is practically impossible to obtain its fine structure

from the beam-based measurements. The measurable values
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are integral parameters combining the impedance and the

bunch spectrum, such as effective impedance, longitudinal

loss factor or transverse kick factor. Using these measured

parameters, simplified impedance models are usually devel-

oped to characterize and predict collective effects of beam

dynamics.
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