

Experimental evidences of trapped E.M. waves in an axis-symmetric magnetic trap

G. Castro¹, R. Miracoli², G. Torrisi¹ L. Celona¹, O. Leonardi¹, D. Mascali¹, and S. Gammino¹

¹INFN-LNS, Catania – Italy ²ESS-Bilbao, Zamudio, Spain

• Two-Close Frequency Heating (TCFH $\Delta f < 1$ GHz) can positively affect plasma stability and improve source performances; (Naselli et al., PSST 28 (2019) 085021), Racz et al., 2018 *JINST* 13 C12012

Motivations

- Modification of few Tens of MHz of the injection frequency can modifies beam shape beam emittance and Charge State Distribution (Frequency Tuning Effect- FTE);
- Two-Frequency Heating (TFH, $\Delta f \sim 1-5$ GHz, improves the production of higher charge state;
- Electron Bernstein Waves production for overdense plasmas generation ---> Proton sources;
- Etc. etc.

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

Motivations

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

Motivations

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

The flexible plasma Trap

INFŃ

Search for a correlation between wave intensity and plasma parameters

"Customized" Microwave coaxial Cable "Sucoflex 102" DC/40 GHz enclosed in Alumina tube

- <u>sensitive to the short wavelength</u> of longitudinal waves near the resonance layer
- polarization sensitive, the electrostatic radial component
- small enough to have the desired spatial resolution

INFN

Search for a correlation between wave intensity and plasma parameters

Langmuir Probe characterization

Wave intensity characterization

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

The Clemmow-Mullaly-Allis (CMA) Diagram

Collisionless approximation

Normalized plasma parameter:

$$X = \frac{\omega_p^2}{\omega_{RF}^2} \propto n_e \quad Y = \frac{\omega_c}{\omega_{RF}} \propto B$$
$$\omega_c = \frac{eB}{m_e} \qquad \omega_p = \sqrt{\frac{e^2 n_e}{m_e \varepsilon_0}}$$

Extraordinary wave propagation in plasma constrained by:

R Cut-off: Y=1-X
L Cut-off: Y=X-1
UHR: Y =
$$\sqrt{1-X}$$
 $\vec{k} \perp \vec{B}$
General UHR: Y = $\sqrt{\frac{X-1}{X\cos^2 \theta - 1}}$
 θ angle between \vec{k} and \vec{B}
 $X > 1$ overdense plasma

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

For each position of the LP, plasma parameters have been evaluated and placed on the CMA diagram

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

Slow to Fast - X wave transition

 The largest part of E.M power coupled with plasma is enclosed below the R-cutoff region and transported by the Fast X wave;

Conditions for wave trapping?

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

24rd International Workshop on ECR ion sources - MSU (USA) - September 28-30

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

Conclusions

- Evidence of Slow X to Fast X wave transition within plasma core in the FPT.
- Most of the power coupled with the plasma is transported by the Fast X wave and measured between R cut-off / UHR layers.
- Energy densification within the layers can be interpreted as F-X wave trapping within the R cutoffs/ UHR layers. If FX is is not generated, no Energy densification is measured.
- EM energy densification favoured by the decrease of v_φ to 0 due to UH Resonance → Energy density quick increases approaching the UHR: ω_{RF} = ω_{RF}√ε.
- EEDF distorsion at UHR implies an involvement of UHR \rightarrow coupling between EM waves and ES waves \rightarrow contribution to kinetic instability (increase of V_{\perp}/V_{\parallel})
- Further measurements shall make use of time resolved diagnostics and spectral analysis of the EM power to improve the comprehension of the phenomenon.

INFN

24rd International Workshop on ECR ion sources – MSU (USA) - September 28-30

EXPERIMENTAL RESULTS

Measurements of wave in plasma: Special probes development

- sensitive to the short wavelength of longitudinal waves near the resonance layer
- polarization sensitive, the electrostatic radial component
- <u>small enough to have the desired spatial resolution</u>

Simulated Electric filed profile along longitudinal z-axis and transversal x-axis of FPT

Courtesy of S. Passarello N. Amato INFN-LNS mechanical workshop

"Customized" Microwave Cable "Sucoflex 102[©]"

- thermal vacuum DC/40 GHz K-connector 2.9 mm
- Outer diameter: 4 [mm]
- *Pin length*: 3.5 [mm]
- Pin distance: 2 [mm]

Inner Conductor CuAg wire Dielectric LD_PTFE Outer Conductor CuAg tape/braid Jacket FEP

Cold population diagnostics (LP and OES) and worm/hot population diagnostics evidence a shift of EEDF from low to high energydecrease of the density of cold electrons (1-30 eV) when 0.75 threshold is overcome