Author: Romano, F.P.
Paper Title Page
MOCO01 Innovative Schemes of Plasma Heating for Future Multiply-Charged Ions Sources: Modeling and Experimental Investigation 14
 
  • D. Mascali, C. Altana, G. Castro, L. Celona, S. Gammino, O. Leonardi, M. Mazzaglia, D. Nicolosi, R. Reitano, F.P. Romano, G. Sorbello, G. Torrisi
    INFN/LNS, Catania, Italy
  • M. Mazzaglia, R. Reitano
    Universita Degli Studi Di Catania, Catania, Italy
  • F.P. Romano
    IBAM-CNR, Catania, Italy
  • G. Sorbello
    University of Catania, Catania, Italy
 
  The application of plasma heating methods alternative to the direct Electron Cyclotron Resonance coupling, such as the Electron Bernstein Waves (EBW) heating, is already a reality in large-size thermonuclear reactors. These plasma waves give the unique opportunity to largely overcome the cutoff density. EBW heating in compact traps such as ECRIS devices is still a challenge, requiring advanced modelling and innovative diagnostics. At Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS), the off-ECR heating (driven by Bernstein waves) has produced a highly overdense plasma. Interferometric measurements say the electron density has overcome by a factor ten the cutoff density at 3.76 GHz. More advanced schemes of wave launching have been designed and implemented on the new test-bench called Flexible Plasma Trap, operating up to 7 GHz-0.5 T, in flat/simple mirror/beach magnetic configuration. The paper will give an overview about modal-conversion investigation by a theoretical and experimental point of view, including the description of the diagnostics developed to detect plasma emitted radiation in the RF, optical, soft-X and hard-X-ray domains.  
slides icon Slides MOCO01 [13.465 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-MOCO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MODO01 Structural Information on the ECR Plasma by X-ray Imaging 30
 
  • R. Rácz, S. Biri
    ATOMKI, Debrecen, Hungary
  • C. Caliri, G. Castro, S. Gammino, D. Mascali, L. Neri, F.P. Romano
    INFN/LNS, Catania, Italy
  • J. Pálinkás
    DU, Debrecen, Hungary
  • F.P. Romano
    IBAM-CNR, Catania, Italy
 
  Precise knowledge on the density distribution of the Electron Cyclotron Resonance Ion Source plasma is needed by several reasons: i) in order to possibly improve the quality parameters of the extracted ion beam (emittance, brightness) strongly linked to the plasma structure, ii) to correctly investigate the recently observed plasma instabilities and/or the implementation of alternative heating methods (e.g. modal conversion) iii) in order to improve the general microwave-to-plasma coupling efficiency, in view of a microwave-absorption oriented design of future ECRIS. The non-destructive spectroscopic diagnostic methods give information always corresponding to an integration over the whole plasma volume. X-ray imaging by pin-hole camera can partly overcome this limitation. We performed volumetric and space resolved X-ray measurements at the ATOMKI ECRIS operated at lower frequencies than usual. The experimental setup in detail and the methods how the working parameters were selected will be shown. The integrated and photon-counting analyses of the collected plasma images show a strong effect of the frequency and magnetic field on the plasma structure and local energy content.  
slides icon Slides MODO01 [10.710 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-MODO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)