Author: Peaucelle, C.
Paper Title Page
TUAO05 First Plasma of the PHOENIX V3 ECR Ion Source 48
 
  • T. Thuillier, J. Angot, L. Bonny, J. Jacob, T. Lamy, P. Sole
    LPSC, Grenoble Cedex, France
  • J.L. Flambard, L. Maunoury
    GANIL, Caen, France
  • T. Kalvas
    JYFL, Jyväskylä, Finland
  • C. Peaucelle
    IN2P3 IPNL, Villeurbanne, France
 
  Funding: This project was partially funded by the EU Grant Agreement 283745.
PHOENIX V3 is an upgrade of the PHOENIX V2 ECR ion source granted by the European CRISP project. This new ECRIS features a larger plasma chamber and a re-duced vacuum pressure under operation. The V3 source will replace the V2 one on the SPIRAL2 accelerator in 2018. The first plasma of PHOENIX V3 was achieved on May 9th 2016. The early commissioning of the V3 source at low 18 GHz power demonstrates as expected an en-hancement of the high charge state production and Ar14+ intensity already exceeds the V2 one. Further enhance-ments are expected the outgassing will be achieved and the full RF power will be injected in the source.
 
slides icon Slides TUAO05 [7.050 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-TUAO05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP05 Status Report on Metallic Beam Production at GANIL/SPIRAL 2 92
 
  • C. Barue, O. Bajeat, J.L. Flambard, R. Frigot, P. Jardin, N. Lechartier, F. Lemagnen, L. Maunoury, V. Metayer, O. Osmond
    GANIL, Caen, France
  • C. Peaucelle
    IN2P3 IPNL, Villeurbanne, France
  • P. Sole, T. Thuillier
    LPSC, Grenoble Cedex, France
 
  Primary ion beams from metallic elements are routinely produced at GANIL using ECR4 and ECR4M 'room temperature' ECR ion sources. Ionization efficiency measurements, partially presented in the past, are summarized in this report together with updated and new results obtained with Cd, Mo and Ta. Preliminary results for Ni and Ca obtained with the room temperature Phoenix-V2 ECR ion source, under commissioning for SPIRAL 2, are also included. These ionization efficiencies are compared according to the production methods: oven, sputtering, MIVOC, gaseous compounds. The presently SPIRAL 2 heavy ion injector designed for ions Q/A=1/3 shows clear limitations in terms of intensity for metallic ions with mass higher than 60 (intensity < 1 pμA). In order to choose the best ion source for a future Q/A=1/6, 1/7 injector, best world results have been compiled for different existing 'room temperature' and superconducting ECR ion sources.
# christophe.barue@ganil.fr
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-WEPP05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)