Author: Allegra, L.
Paper Title Page
TUAO01 The Proton Source for the European Spallation Source (PS-ESS): Installation and Commissioning at INFN-LNS 39
 
  • L. Celona, L. Allegra, A. Amato, G. Calabrese, A.C. Caruso, G. Castro, F. Chines, G. Gallo, S. Gammino, O. Leonardi, A. Longhitano, G. Manno, S. Marletta, D. Mascali, A. Massara, A. Maugeri, M. Mazzaglia, L. Neri, S. Passarello, G. Pastore, A. Seminara, A. Spartà, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
  • S. Di Martino, P. Nicotra
    Si.A.Tel SRL, Catania, Italy
 
  A 2.45 GHz ' 0.1 T microwave discharge Proton Source has been designed and assembled at INFN-LNS for the European Spallation Source (PS-ESS) in order to produce pulsed beams of protons up to 74 mA nominal current, at 75 keV of energy, with a transverse emittance containing 99 % of the nominal proton current below 2.25 π mm mrad and a beam stability of ± 2 %. The challenging performances of the machine have triggered specific studies on the maximization of the proton fraction inside the plasma and of the overall plasma density, including dedicated modelling of the wave-to-plasma interaction and ionization processes. The plasma conditioning phase started in July and excellent RF to plasma coupling, more than 99.5% is evident since the beginning. Reflected power fluctuation less than 0.05 % was measured providing a great starting point to reach the beam stability requested by the ESS accelerator.  
slides icon Slides TUAO01 [14.571 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-TUAO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP18 Innovative Mechanical Solutions for the Design of the High Intensity Proton Injector for the European Spallation Source 112
 
  • G. Gallo, L. Allegra, L. Celona, S. Gammino, D. Mascali, L. Neri, G. Torrisi
    INFN/LNS, Catania, Italy
 
  The design of the 2.45 GHz, 0.1 T microwave discharge Proton Source for the European Spallation Source (PS-ESS) has required on-purpose solutions in order to maximize the beam brightness, keeping a very high reliability figure. The mitigation of maintenance issues has been the main guideline through the design phase to maximize the MTBF and minimize the MTTR. The mechanical design has been based on advanced solutions in order to reduce as much as possible the venting time for the plasma chamber, to facilitate the replacement of extraction electrodes and/or plasma chamber, and to simplify any after-maintenance alignment procedure. The paper will describe the strategy which has driven the design phase, the solutions adopted to fulfil the project goals and the results of the assembly phase recently concluded at INFN-LNS with successful first plasma.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-WEPP18  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)