

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Status of the ECRIS Charge State Breeding Project at TRIUMF

F. Ames, R. Baartman, P. Bricault, K.Jayamanna, M. McDonald, P. Schmor, T. Lamy*

*LPSC UJF-CNRS/IN2P3-INPG, Grenobles, France

ECRIS08 workshop, Chicago, September, 2008

LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Charge state breeding at ISAC:

Requirements:

- M/Q < 30 with additional stripping after first acceleration stage (150 keV/u)
- M/Q < (6)7 without additional stripping
- ion velocity: 2 keV/u
- transversal emittance: $\leq 30 \pi$ mm mrad

```
•Incoming beam:
```

```
singly charged ions continuous beam
typical emittance < 30 \pi mm mrad @ 30 keV
beam intensity: 1 ... > 10<sup>10</sup> ions/sec
```

CSB test stand at TRIUMF

14.5 GHz ECR source PHOENIX from Pantechnikelements measured :Ar, Kr, Xe from ECR ion sourceK, Rb, Cs from surface ion source

modified PHOENIX source

2 step deceleration for the injection of singly charged ions

2 step acceleration scheme + Einzel lens focusing

for the extraction of the highly charged ions

extraction electrodes

injection electrodes

mass spectrum with and without Cs⁺ injection (500 W rf power)

charge state distribution of Cs 15 nA Cs¹⁺ injected total efficiency >20%

breeding time

pulsed injection of 1+ ions signal as function of time

signal rise time for different Cs charge states (10,15,18,22)

Xe, Cs and Rb breeding time

charge breeder results from the test stand

Measurements with ions from standard ISAC ion sources

Element	Mass	Charge state with maximum efficiency (A/Q)	Efficiency (%)	rise time (90%) for charge state with maximum efficiency (ms)	1+ ion source
Ar	40	8+ (5)	5.5	102	ECR
Kr	84	12+(7)	6.3	401	ECR
Xe	129	17+ (7.6)	4.8	432	ECR
K	39	9+ (4.3)	2.1		surface
Rb	85/87	13+ (6.5)	3	230	surface
Cs	133	20+ (6.7)	3.5	300	surface + testsource

•emittance of Csⁿ⁺ measured < 20 π mm mrad @ 15q keV

measurement of charge exchange cross sections

transmission for different Cs charge states in nitrogen exponential fit

cross sections for highly charged Rb and Cs ions in O_2 and N_2 error bars: statistical error from fit of exponentials

cross section for charge exchange with residual gas measured

transmission after 25 m as function of pressure

installation of the charge state breeder at ISAC

ion optical simulation for mass resolution after charge state breeding

Summary and Outlook

- charge breeding has been studied with stable ions
- mass to charge ratio A/q = 4.3 ($^{39}K^{9+}$) to A/q = 6.7 ($^{133}Cs^{20+}$) higher for higher masses
- efficiency ≈>3 %
- breeding time x 100 ms
- high background from residual gas ions can be separated in most cases
- charge exchange rates for 10-20 q keV (q<23) measured
- for q \approx > 10 cross section only depends on q
- on line installation finished commissioning ongoing
- first beam scheduled for November 2008

thank you TRIUMF 4004 Wesbrook Mall Vancouver, B.C. Canada V6T 2A3 Tel: 604 222-1047 Fax: 604 222-1074 www.triumf.ca