

Broadband Excitation of ECR Plasmas

Wayne D. Cornelius Scientific Solutions & SAIC, San Diego CA

> D. Leitner, M. Galloway LBNL, Berkeley CA

D. P. May Texas A&M University, College Station TX

> R. D. Penny SAIC, San Diego CA

Overview

- 1. Problem to be addressed
- 2. Approach
- 3. Results

Scientific Solutions

- 4. Conclusions
- 5. Future?

The energy transferred to the electrons is given by the amplitude of the <u>in-phase</u> rf field integrated over the "width" of the electron-cyclotron resonance zone.

Scientific Solutions Problem

The width of the ECR zone is given by the rf bandwidth (Δf) divided by the field gradient (dB).

$$\frac{\Delta f}{\gamma \cdot \nabla B}$$

 γ is the cyclotron frequency (~2.79 GHz/kGauss)

Problem

Scientific Solutions

Given a constant magnetic field profile, which is more efficient:

- Narrow-band rf with higher peak rf power?
- Wide-band rf with lower peak rf power?

Approach

Solutions modified a software-defined radio to investigate this question.

Scientific Solutions

- The system was designed to acquire and analyze resonant spectra between 100 and 1000 MHz.
- Modified to produce user-selectable spectra in the 1-2 GHz band.
- These spectra are frequency-multiplied into the common ECR bands.

Scientific Solutions

Operational Modes:

- 1. Simultaneous "Comb" Spectrum.
- 2. Up-Chirp or Down-Chirp.
- 3. Combination of 1 and 2.

Output spectra would not pass FCC requirements (aliased modes and spurious power in sidebands), but are acceptable for ECR applications.

Scientific Solutions

Approach

Approach

Simultaneous Frequency Spectra

Scientific Solutions

2-Frequency Chirp Spectrum

Approach

Chirp Frequency Spectra

TAMU 14.5 GHz Source

TAMU 6.4 GHz Source

Au³²⁺

Ar¹²⁺

TAMU 14.5 GHz Source

Kr¹⁹⁺

Ag²⁵⁺

Scientific Solutions

LBNL AECR-U

Tuning?

LBNL AECR-U

Log Scale

Scientific Solutions

Linear Scale

Tuning?

LBNL AECR-U

Scientific Solutions

Forward Power

Reflected Power

Tuning?

LBNL AECR-U

Forward Power

Scientific Solutions

Reflected Power

Scientific Solutions

LBNL AECR-U 2-Frequency Heating (14.5 + 10 GHz)

²⁰⁹Bi

Scientific Solutions

LBNL AECR-U 2-Frequency Heating (14.5 + 10 GHz)

²⁰⁹Bi

Scientific Solutions

LBNL AECR-U 2-Frequency Heating (14.5 + 10 GHz)

²⁰⁹Bi

Scientific Solutions

LBNL AECR-U 2-Frequency Heating (14.5 + 10 GHz)

LBNL AECR-U

- Significant improvement in ion current when operating at lower rf power levels.
- Modest improvement in the highest chargestates under certain circumstances.
- Improved operational stability.

Clearly more testing is needed.

US DoE supported this project under contract Number DE-FG02-04ER84166.

Units can be made available for further testing at DoE-funded facilities.

Conclusions

14.5 GHz RID