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Abstract

The scalar and vector potentials of magnetic multipole de-
vices are investigated. Special attention is paid to the
fringe field region. Pseudo differential operators induced
by Bessel functions are used to obtain the various multipole
coefficients of the potential. The fringe fields are fitted us-
ing a finite element basis; the coefficients of the best fit are
directly obtained from field measurements at the surface
r = R.

1 INTRODUCTION

From Maxwell’s equations for the static electromagnetic
field, we find that, for a magnetic field~B in a region with-
out free charges or currents, there exist a scalar potentialu,
and a vector potential~A, satisfying:

gradu = ~B = curl ~A; (1)

�u = 0; (2)

curl curl ~A = ~0: (3)

The vector potential~A will be chosen such thatdiv ~A = 0.
In this case, we have� ~A = ~0.

We apply these equations to the magnetic field inside a
magnetic multipole device which has thez-axis as its cen-
tral axis. Our region of interestG is, in cilindrical coordi-
nates, given by:G : 0 � r < R; �� � ' � �; �1 <

z < 1, with boundary� : r = R. Here,R > 0 is a con-
venient maximal radius of the multipole device, e.g. the
aperture radius.

The potential problem is then given by:8<
:

�u = 0; x 2 G,

u(R;'; z) = UR('; z); x 2 �.
(4)

In order to have a unique solution to this problem, we have
to impose the additional conditions:

ju(r; '; z)j is bounded on G;

lim
jzj!1

ru(r; '; z) = 0; r � R;Z
1

�1

ju(r; '; z)jdz <1; r � R:

(5)

In practical cases, these conditions will always be satisfied,
which guarantees that the solution to (4) is unique.
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2 HARMONIC POTENTIALS

In cylindrical coordinates(r; '; z), (2) is given by:
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Since we use cylindrical coordinates we can expand
u(r; '; z) into a Fourier series:

u =

1X
m=0

(am(r; z) cos(m') + bm(r; z) sin(m')):

Having inserted this expansion into (6), we find that the
coefficients of the'-independent term and the terms with
cos(m') and sin(m') must vanish independently. This
yields:
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bm = 0:

In these equations, any coefficientam or bm will be con-
sidered to be a function ofr only, while z is merely a pa-
rameter. Then@

@z
can be seen as a linear operator, and the

formal solutions to these equations are given by:

a0(r; z) = J0(r
@

@z
)A0(z);

am(r; z) = Jm(r
@

@z
)Am(z); m = 1; 2; : : :

bm(r; z) = Jm(r
@

@z
)Bm(z); m = 1; 2; : : :

whereJm denotes the Bessel function of the first kind of
orderm, andAm andBm are to be determined from the
boundary conditions. The general solution foru(r; '; z)

reads:

u =

1X
m=0

Jm(r
@

@z
)(Am cos(m') + Bm sin(m')): (7)

These expressions become meaningful if we take their
Fourier transforms with respect toz:

~am(r; !) = imIm(!r) ~Am(!);

~bm(r; !) = imIm(!r) ~Bm(!):

Using the standard recurrent relations for derivatives of
Bessel functions, we can easily calculate ther- and '-
derivatives of terms likeam(r; z) cos(m'), etc. This will
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be used when determining a harmonic vector potential for
~B = gradu.

Using (1), we can determine a vector potential~A for ~B.
We choose~A such thatdiv ~A = 0, which implies that~A is
harmonic. A possible solution is given by

Ar =

1X
m=1

Jm+1(r
@

@z
)(Bm cos(m')�Am sin(m'));

A' =

1X
m=0

Jm+1(r
@

@z
)(Am cos(m') +Bm sin(m'));

Az =

1X
m=1

Jm(r
@

@z
)(�Bm cos(m') +Am sin(m')):

This solution is not unique; the gradient of any harmonic
scalar-valued function can be added in order to yield an-
other valid solution.

3 INTRODUCING BOUNDARY
CONDITIONS

Consider the boundary conditionu(R;'; z) = UR('; z).
The function (or distribution)UR can be expanded into a
Fourier series:

UR('; z) =

1X
m=0

(UmR cos(m') +WmR sin(m')):

Inserting general solution (7) into the boundary condition
yields the (weak) equation

am(R; z) = Jm(R
@

@z
)Am(z) = UmR(z);

while a similar result holds forbm(R; z). Taking the
Fourier transform of this equation yields

~Am(!) =
~UmR(!)

imIm(!R)
: (8)

Equation (8) determines the coefficientsAm andBm, and
therefore the potentialu, uniquely. For example, the coef-
ficientsam(r; z) are given by

am(r; z) =

�
F�1

Im(!r)

Im(!R)
F

�
UmR(z):

After expanding the Fourier integrals in this expression,
one eventually finds:

am(r; z) =

Z
1

�1

gm(r; z � �)UmR(�)d�; (9)

where the basic functiongm(r; z) is given by

gm(r; z) =
1

�

Z
1

0

Im(!r)

Im(!R)
cos(!z)d!:

In fact,gm(r; z) is the solution in the case thatUmR(z) =
�(z). This will be used in the next section.

By expanding the functionsgm into powers ofr=R, one
can expand the coefficientsam andbm into powers ofr=R.
For example:

am(r; z) =

1X
l=0

�ml(z)
� r
R

�m+2l
;

�ml(z) =

Z z

�1

gml(z � �)UmR(�);

gml(z) =
1

4ll!(m+ l)!�

Z
1

0

(!R)m+2l

Im(!R)
cos(!z)d!:

This will be useful for deriving particle trajectory equations
for a beam guiding element that are accurate up to a certain
order inr=R. The coefficient�m0(z) can also be used to
fit the multipole strength( @m

@rm
am)(0; z).

In general, we write fork � m� 1:

Jk(r
@

@z
)Am(z) =

Z
1

�1

gkm(r; z � �)UmR(�)d�;

wheregkm is given by:

gkm(r; z) =
1

�

Z
1

0

Ik(!r)

Im(!R)
ik�mei!zd!:

This allows us to calculate the components of~A and their
derivatives from the boundary conditions atr = R. In fact,
any quantity related to the magnetic field can be calculated,
if the right basic function is used.

In the case that not the potential, but a component of~B,
e.g.B', is known atr = R, we find:

Jk(r
@

@z
)Am(z) =

Z
1

�1

R

m
gkm(r; z � �)BmR(�)d�:

whereBmr(�) cos(m') denotes the2m-pole contribution
to B' at r = R. If Br orBz are known, appropriate basic
functions can also be derived.

4 FITTING THE MULTIPOLE FIELD

In practice, we obtain approximations ofUmR or its deriva-
tives by interpolating a discrete set of measurements. Since
piecewise constant or piecewise linear interpolations are
often employed, the special cases ofUmR being piecewise
constant or linear will be considered here. First, assume
UmR is piecewise constant. Then there are pairs(�i; zi)
such thatU 0mR =

P
i �i�(z � zi). Then, after integration,

Jk(r
@

@z
)Am(z) =

X
i

�iG
k
m(r; z � zi);

whereGk
m(r; z) =

R z
�1

gkm(r; �)d�. If UmR is supposed to
be piecewise linear, thenU 00mR =

P
i �i�(z� zi), in which

case we have

Jk(r
@

@z
)Am(z) =

X
i

�i ~G
k
m(r; z � zi);
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where~Gk
m(r; z) =

R z
�1

Gk
m(r; �)d�. As was shown above,

related quantities can easily be derived by replacing the
functionsGm and ~Gm by functions related to these quanti-
ties, while retaining the pairs(�i; zi).

At this point we shall show how to determine the various
multipole contributions to a magnetic field from the values
of Bz at r = R. At r = R, theBz-component is given by:

Bz(R;'; z) =

1X
m=0

(U 0mR cos(m') +W 0

mR sin(m')) :

AssumeBz is known at the points(R;'i; zj). ThenU 0mR

is the Fourier coefficient ofcos(m'), andBj = U 0mR(zj)

is obtained from:

Bj =
1

�

Z �

��

Bz(R;'; zj) cos(m')d'

Choosing a piecewise constant approximation forU 0mR(z),
we find U 00mR(z) =

P
l(Bl+1 � Bl)�(z � zl), so

Jk(r
@
@z

)Am(z) is approximated by:

Jk(r
@

@z
)Am(z) =

X
l

(Bl+1 �Bl) ~Gm(r; z � zl):

Since~Gm(r; z) is a known function,Jk(r @
@z

)Am(z) can be
approximated directly from the measurements. Elaborate
calculations on the measurements are not necessary.

It should be noted that, in order to determine the2m-
pole contribution, one needs measurements performed at
2n different angles'i.

From (9), we find thatam depends linearly onUmR.
This allows us to calculate the effect of errors inUmR on
the calculation ofam. It turns out, that

sup
z2R

j�am(r; z)j �
� r
R

�m
sup
z2R

j�UmR(z)j;

where�am and�UmR denote the errors inam andUmR

respectively. This justifies the use of the given approxima-
tions.

5 EXPERIMENTAL TEST OF THE
PRESENTED THEORY

The theory developed in the previous sections has been
verified using actual field measurements for a magnetic
quadrupole, performed by G. Brooijmans [1]. Using a
normal-orientated quadrupole, he measured the component
By for y = 0 and numerous values ofx and z. Using
the measurements for the outermost value ofx, we calcu-
latedBy for the other values ofx and compared the calcu-
lations to the measurements. SinceBy = B' for x > 0

andBy = �B' for y < 0, we used the basic function
Ĝ2(r; z) = R

r
G2(r; z) for the fitting procedure. The re-

sults of the calculations and the measurements are shown
in figure 1.

The differences between the calculations and measure-
ments result mainly from errors in the numerical calcula-
tion of the basic functions. This calculation is complicated

because of the integration on[0;1) that has to be carried
out. Fortunately, the basic functions need to be calculated
only once.
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Figure 1: Comparison of the measured and calculatedBy

as a function ofz for various values ofx. The dots repre-
sent the measurements, the curves the calculated field.

6 CONCLUSIONS

The magnetic field inside a magnetic multipole, and its har-
monic scalar and vector potentials, have been explored in
the area0 � r < R and�1 < z <1. The various multi-
pole contributions to these quantities have been fitted using
field measurements at the boundaryr = R and shifted ba-
sic functions. The same set of measurements and shiftings
can be used to fit many field-related quantities.

The developed procedure is independent of the exact
form of the boundary conditions and can be used to fit the
field of one device or various consecutive devices.

The procedure works for any order multipole contribu-
tion, but will be the most useful for lower order multipole
contributions, since higher order multipole contributions
are more difficult to obtain from measurements their effect
on particle trajectories will often be small.

Recently, M. Venturini and A. Dragt presented an article
at CPO 5, in which they also derive multipole coefficients
from boundary conditions [2]. This article presents a some-
what different view on the subject.
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