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Abstract

The cylindrical transverse charge profile of the electron
beam in an electron cooler causes a linear tune shift of the
ion beam when it is fully immersed in the electron beam.
Near the edge of the electron beam, however, the electric
field is highly non-linear and will perturb the motion of the
ion beam. This regime is of interest for accelerators that
use electron cooling to improve accumulation, especially
after injection when the ions’ beam size is larger than that
of the electrons. In this report we analyze the magnitude of
this effect and calculate the resonance driving terms of the
electric field created by a cylindrical electron beam.

1 INTRODUCTION

The radial distribution of the electron beam in an electron
cooler is almost constant over the cross section of the elec-
tron beam and almost zero outside. The resulting electric
field rises linearly inside the electron beam and drop like
1/r outside, resulting in a sharp edge at the border of the
electron beam. The interaction of the ion beam with the
electric field of the electron beam is conceptually similar to
a strong-weak beam-beam effect in a collider. In the elec-
tron cooler the sharp edge of the electric field may drive
high order resonances more strongly than the rather smooth
beam-beam kicks from round gaussian beams. In ref. 1 it
is suggested that these resonances are responsible for the
observed “electron heating” in CELSIUS and we try to add
a facet to its interpretation.

If we assume a constant transverse charge density we can
calculate the linear tune shift the ion beam experiences to
be

∆νx =
rp

2πec

βxl

b2
Ie

γβ3
(1)

whererp is the classical proton radius,βx is the beta func-
tion at the location of the cooler,l its length,b the radius of
the electron beam,Ie the electron current.β andγ are the
normalized speed and energy of the ion beam. In CELSIUS
[1], for protons at injection energy of 48 MeV we calculate
∆νx = 0.038Ie/A.

Moreover, the electron beam attracts the positively
charged ion beam towards its center and thus provides a
focussing force which will increase the tune in the center
of the ion distribution, provided good alignment between
electron and ion beam. Ions in the tail will experience a
smaller tune shift and will thus have lower tune values.

In the following sections we will investigate the non-
linear tune shift and the resonance structure of a slightly
refined model to the hard edge electron beam by smooth-
ing the edges.

2 CHARGE DISTRIBUTION AND FIELD

The radial distribution of the electrons is parametrized by

ψ(r) = erfc

(
r − b

a

)
(2)

whereb determines the size of the electron beam anda pro-
vides a cutoff parameter to smooth the edge. It determines
the width over which the electron distribution decays to
zero. Using Gauss’ Law2πRE(R) =

∫ R
0 2πrψ(r)dr the

electric field arising from this charge distribution is calcu-
lated in ref. 2 with the result

RE(R) = a2 (F (z1)− F (z2)) + ab (G(z1)−G(z2))
(3)

with F (z) =
∫∞
z
t erfc(t)dt =

(
1/4− z2/2

)
erfc(z) +

z e−z
2

/2
√
π andG(z) =

∫∞
z
erfc(t)dt = e−z

2

/
√
π −

z erfc(z) andz1 = −b/a andz2 = (R − b)/a. The distri-
butionψ(r) and electric fieldE(r) for b = 1 anda = 0.1
are shown in Fig. 1. On the same graph the distribution
and electric field of a gaussian with the same slope at the
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Figure 1: Radial charge distribution and associated field
for gaussian (dotted lines) and erfc-distribution (solid
lines).

1085



0.0 1.0 2.0 3.0 4.0 5.0
sqrt(2J)

0.0

0.2

0.4

0.6

0.8

1.0

∆ν
/ξ

gaussian

a=0.01

a=0.1

Figure 2:Non-linear tune shift as a function of the ampli-
tude of the oscillation

√
2J. The curve from the gaussian is

shown solid, the one fora = 0.1 dashed, and fora = 0.01
dotted.

origin are shown for comparison. We clearly observe that
both distributions have the same slope at the origin and that
the field from the erfc-distribution has enhanced inflection
points near the edge of the distribution. For large radiir
both fields decay as1/r. It is also noteworthy that the total
charge in the beam for a gaussian and an erfc-distribution
with smalla are equal, provided the associated tune shifts
are equal. Another fact is that the rms of the gaussian with
the same tune shift as the erfc-distribution is about1/

√
2

times the beam sizeb of the erfc-distribution.

3 TUNE SHIFT AND FOOTPRINT

In order to calculate the non-linear tune shift we mimic the
calculations in ref. 3. We start with the differential equa-
tion for the transverse betatron motion with a single located
non-linear forceS(η) with unit slope at the origin

d2η

dθ2
+ ν2η = −4πνξS(η)δp(θ) . (4)

Here we parametrized the strength of the perturbation in
terms of the linear tune shiftξ at the origin,θ is the az-
imuthal variable and runs from zero to2π. As independent
variables we have chosen those of normalized phase space
η, η′ which are related to those of phase spacex, x′ and of
action angle variablesJ, φ byx =

√
βxη =

√
2Jβx cos(φ)

andη′ = −ν
√
2J sin(φ). For the tune shift we get after

some manipulations

∆ν(J) =
2ξ
√
2J

∫ 2π
0

dφ

2π
cosφS(

√
2J cosφ) . (5)

As a check we calculate the tune shift for a constant linear
forceS(η) = η. It is easy to see that in this case the tune
shift is given byξ. For a general kick it is easiest to evaluate

the integral numerically. Inserting the erfc-distribution’s
electric field we generate the data shown in Fig. 2 where
we plot∆ν(J)/ξ as a function of

√
2J for a = 0.1 and

0.01 and for the gaussian beam-beam kick. We clearly see
that the tune shift for the erfc-distribution stays constant
up to the electron beam’s radius at

√
2J = 1. The only

difference lies in the sharper roll-over to the inverse decay
outside the beam.

In order to calculate the tune footprint of the erfc dis-
tribution we write down the equations of motion for the
coupled system inx andy

d2ηx

dθ2
+ ν2xηx = −4πνxξS(r)

ηx

r
δp(θ) (6)

with r2 = 2Jx cos
2 φx + 2Jy cos

2 φy andη, η′, φ, andJ
now carry subscriptsx or y. After some algebra we obtain

dφx

dθ
= νx + 4πξ cos

2 φx
S(r)

r
δ(θ) (7)

and a similar equation for the vertical coordinate. We now
keep only the constant part of the delta-function, average
over phasesφx andφy, and reach

∆νx(Jx, Jy) = 2ξ

∫ 2π
0

dφx

2π

∫ 2π
0

dφy

2π
cos2 φx (8)

×
S(
√
2Jx cos2 φx + 2Jx cos2 φx)√
2Jx cos2 φx + 2Jx cos2 φx

and a similar equation forx andy exchanged. The double
integral can be easily integrated numerically and we can
plot the tune shifts∆νx and∆νy for different action vari-
ablesJx andJy, as shown in Fig. 3.

The left figure shows the tune footprint for a round gaus-
sian beam and the right figure that of an erfc-distribution.
The rms beam size of the gaussian corresponds to1/

√
2

times the radiusb of the erfc-distribution, such as those
shown in Fig. 1. The lines correspond to amplitudes√
2Jx/y = 1, 2, 3, 4×b.Comparing the footprints we learn

that for small amplitudes
√
2Jx/y ≤ b the tune shift stays

close to the top right corner which corresponds to the full
linear tune shift. Another important observation is that the
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Figure 3: Tune footprint of a round gaussian beam with
σ = b/

√
2 (left) and a beam with erfc-distribution witha =

0.1 (right). The lines correspond to particle amplitudes of√
2Jx/y = 1, 2, 3, 4× b.
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tune footprint of the erfc-distribution is wider than of the
gaussian, which means that it is more likely to hit reso-
nances. The driving terms of these resonances will be ad-
dressed in the next section.

4 RESONANCES

The resonance driving terms can be evaluated by following
ref. 3 again. To this end we replace the periodic delta func-
tion by its Fourier expansionδp(θ) = 1

2π

∑∞
m=−∞ e−imθ.

FordJ/dθ anddφ/dθ we obtain the expressions

dJ

dθ
= 2ξ

√
2J sinφS(

√
2J cosφ)

∞∑
m=−∞

e−imθ (9)

dφ

dθ
= ν +

2ξ cosφ
√
2J

S(
√
2J cosφ)

∞∑
m=−∞

e−imθ .

We now consider the equation forφ and express the electric
cooler profile functionS(

√
2J cosφ) as a Fourier series

√
2J cosφS(

√
2J cosφ) = J

∞∑
n=0

An cosnφ (10)

where the (actionJ−dependent) Fourier coefficientsAn
can be easily calculated numerically by Fast Fourier Trans-
form methods. The factorJ is retained on the right hand
side to make later formulae easier to write. Note that only
cosine terms appear in that Fourier series, because any
power series ofcosφ can be expressed in terms ofcosnφ,
only. After some algebra we obtain an equation for the res-
onant phaseχ = pφ− qθ which reads

dχ

dθ
≈ (pν − q) + pξA0 + pξAp cos pχ . (11)

We recover the non-linear tune shift termA0 which de-
pends on the action variableJ. We also see that the “in-
stantaneous tune”dφ/dθ varies slowly in the vicinity of a
resonancep/q with amplitude given byξAp which coin-
cides with the definition of the resonance width in ref. 3.

Turning back to the erfc-distribution we use the kick
functionS(η) and calculate the resonance widths fora =
0.1. The resulting tune shift and resonance widths are
shown in Fig. 4 in units of the linear tune shift parameter
ξ, both for a gaussian and an erfc distribution. We see that
there are no resonances excited within the electron beam
(
√
2J ≤ b = 1), but as soon as the ions oscillate with

amplitudes close to the electron beam radius they feel a
strong non-linearity which causes the resonance strengths
to become large. Furthermore the resonance strength stay
larger than those for a gaussian beam in the intermediate
range. Only for large (

√
2J ≥ 4) amplitudes does the erfc-

resonance strength get smaller, as can be seen in Fig. 4.
In summary:in the range between one to three times the
electron beam radius the resonance strengths are consid-
erably larger for an erfc-distribution.This implies that all
even resonances (if the beams are aligned) are excited and

0.0 1.0 2.0 3.0 4.0 5.0
sqrt(2J)

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

lo
g1

0(
A

_p
)

solid: gaussian

dots: erfc with a=0.1

Figure 4: The resonance width forp = 4, . . . , 20 for the
gaussian (solid) and the erfc-distribution (dots) superim-
posed for comparison.

a large number of islands can form. Increasing the electron
currentIe will cause the islands to grow and since there is
a multitude of islands, some will merge, causing chaotic
dynamics (Chirikov’s criterion) and particles will have a
path to diffuse to larger amplitudes. It can, however, also
cause particles which are damped by the electron cooler to
be trapped in the islands, thus impeding the particle’s path
to smaller amplitudes. This phenomenon would reveal it-
self as increased damping time. As a final observation we
report that the resonance strengths scale smoothly with the
cutoff parametera.

5 CONCLUSIONS

We calculated the non-linear tune shift, tune footprint, and
resonance driving terms for an electric field distribution
generated by a radial electron distribution given by eq. 2
and compared with a gaussian distribution. We found that
the resonances are driven stronger near the edge of the dis-
tribution as documented in Fig. 4.

In order to understand “electron heating” better we have
to extend the analysis to coupling resonances, which are
excited due to the presence of the cooler’s solenoid. An-
other field of interest is to calculate the width of the islands
and determine “capture rates” for particles being trapped in
those islands.
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