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HIGHER ORDER FORMULA FOR NONLINEAR DISPERSION
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We perturbatively formulate the nonlinear dispersion and
give the recursion expressions for the higher order terms
up to the fourth order. As an example, the nonlinear dis-
persion function of the storage ring of SPring-8 is numer-
ically calculated. An experimental study of the nonlinear
dispersion was also carried out at the storage ring and it
was found that the agreement between the theory and the
measurement was fairly good up to the second order.

Recently, for the stored beam in an electron storage ring,
there has been increasing interest in making the bunch
length short. One of the important essences for the short
bunch is the smallness of the momentum compaction fac-
tor. In order to make a momentum compaction factor ex-
tremely low, one should control not only the linear part of
the dispersion function but also the nonlinear part. Hence
the development of analytical expression for the nonlinear
dispersion is significant to give a scheme of precisely con-
trolling a momentum compaction factor. Up to the second
order of perturbation the nonlinear dispersion was stud-
ied by a second-order transfer matrix method [1] and by
simplified differential equations of motion [2]. The latter
method is completed by J.-P. Delahaye and J. J¨ager [3] who
gave the formal expression of the nonlinear dispersion up
to the second order. We then accomplish the closed form of
the recurrent equations for higher order terms of the disper-
sion function by means of the Hamiltonian formalism and
solve the equations perturbatively up to the fourth order.
The detail of the present report can be found in [4].

We start with the Hamiltonian for a paricle motion with a
momentum deviation from the design value

(1)

where is the curvature of the bending magnet, and ,
and the strength of the quadrupole, sextupole and

octupole magnets, respectively. The equation of motion for
a particle with off-momentum is then written down as

(2)

(3)

whose periodic solution is the dispersion function. Here
we assume that there is no vertical bending field, so that
we have no vertical dispersion. Expanding the horizontal
motion with respect to the momentum deviation

(4)

(5)

and eleminating the momenta , we derive the recurrent
equations for higher order terms of the nonlinear dispersion
function , which have the following general expression:

(6)

Here the inhomogeneous term is de-
rived perturbatively as

and so on. Since the recurrent equations have the same
form as harmonic oscillation with a driving force, the for-
mal solutions of the equations can be easily obtained in
terms of the Green function [5]. One then finds that the
highest pole of the magnetic field appearing in the explicit
expressions of the nonlinear dispersion corresponds to the
order of the expansion. For example, the sextupole magnet
first appears at the first order, the octupole at the second
order, and so on. This fact suggests that in principle we
can independently adjust each order term of the nonlinear
dispersion by using magnets with suitable multipole field.

Once the nonlinear dispersion are known, we can easily
calculate the higher order terms of the momentum com-
paction factor from the following expression:

(7)

where . At the lowest order we have

(8)
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3 NUMERICAL STUDY

4 EXPERIMENTAL STUDY

which is the usual linear momentum compaction factor.
The next order term is

(9)

and so on. The momentum compaction factor can be re-
garded as the average of the dispersion function which os-
cillates over the ring. Hence the error is canceled out on
an average, and the momentum compaction factor is hard
to be affected by the error. In fact, the numerical calcu-
lations show that the fourth order term of the momentum
compaction factor is scarcely affected by the distortion of
the linear dispersion function while the fourth order of the
dispersion changes largely.

The numerical integration can be carried out by the transfer
matrix method. The driving terms of the equations can be
regarded as the curvature of a sector magnet and hence the
periodic solutions of the harmonic equations are easily de-
rived from the transfer matrix. Order by order the one turn
matrix is constructed from a sequential product of piece
wise matrices of magnetic elements for the corresponding
order dispersion function . Since the -th order term
of the nonlinear dispersion is generated by the -th order
dipole fields, the -th order dispersion can be described by
the same form as sector bending magnets. For the storage
ring of SPring-8, which is the brilliant light source facility
with electron beam energy 8 GeV, the nonlinear dispersion
functions for the design optics are numerically calculated
up to the fourth order. We show each order term of the dis-
persion function form the zeroth to the third in Figs. 1, 2,
3 and 4. As the actual orbit is not known precisely, we

Figure 1: Linear dispersion function in a quarter of the stor-
age ring. The solid line denotes the numerical calculation
and the dots the measured values.

use the design optics to calculate the nonlinear dispersion.
To clarify the condition where we can use the design optics

for the calculation of the nonlinear dispersion, we calculate
it for the cases with some realistic closed orbit distortion
(COD). The result implies that (see Fig. 5), if the distortion
of the linear dispersion is small, up to the third order there
is little difference between the dispersion calculated from
the design optics and that of the actual optics with some
COD’s. On the other hand, one finds that at the fourth or-
der the difference grows larger. It is then concluded that up
to the third order we can discuss the nonlinear dispersion by
means of our formulation with the design optics under the
condition that the leakage of the linear dispersion is made
to several percent order compared to the peak value.

The measurement of the nonlinear dispersion was carried
out at the storage ring, where the COD is corrected less
than one hundred m in r.m.s. value and hence the leakage
of linear dispersion is less than several percent of the peak
value. The measured values of the dispersion function form
the zeroth to the third are expressed by the dots in Figs. 1,
2, 3 and 4, respectively. We found that up to the second
order there are no remarkable discrepancy between the the-
ory and the experiment. On the contrary to the numerical
calculation, we do not see a good agreement between the
theoretical and the measured values at the third order of the
dispersion. This can be explained by the narrow available
momentum range to fit the dispersion. In the narrow range,
the contribution of the fourth power of the momentum de-
viation to the dispersion, i.e. the third order term becomes
comparable to the order of the magnitude of the BPM noise
level, several m.

In order to confirm the significance of the polynomial
expansion of the measured dispersion function, we calcu-
lated the residual of the polynomial fitting by changing the
order of the expansion (see Fig. 6). One finds that up to
the second order the precision of the polynomial expansion
of the dispersion function is improved as the order of the
expansion rises and that at the third order it begins to sat-

Figure 2: The first order nonlinear dispersion function in a
quarter of the storage ring.
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urate. This limitation comes from the narrow momentum
acceptance, which makes it difficult to fit the higher order
terms by the polynomial approximation.

We derived the recurrent expressions for the higher order
terms of the nonlinear dispersion function for a ring with a
large radius of curvature. The measurement of the nonlin-
ear dispersion at SPring-8 agrees fairly well with the for-
mula up to the second order. One of the reasons of this
good agreement is that since the COD is well corrected,
the estimation of the nonlinear dispersion by using the de-
sign optics approximates to the actual one. On the other
hand, the reason of the larger disagreement at the third and
higher orders is that the range of the momentum deviation
over which one fits the nonlinear dispersion is limited by
the momentum acceptance: although the larger momentum
deviation is necessary for estimating the higher order terms
of the nonlinear dispersion, only the limited region of the
momentum is available. In the restricted region the differ-
ence of the orbit due to the higher order terms is small, so
that it is difficult to derive the higher order terms by means
of the polynomial fitting.

Figure 3: The second order nonlinear dispersion function
in a quarter of the storage ring.

Figure 4: The third order nonlinear dispersion function in
a quarter of the storage ring.

Figure 5: The dependences of the variations of the higher
order functions of the nonlinear dispersion on the deviation
of the linear dispersion from the design value.

Figure 6: The variation of the average residual of the dis-
persion function as changing the order of polynomial ex-
pansion.
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