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Abstract

In [1], Kikutani uses a two-particle model to demonstrate
the existence of a “head-tail” instability caused by the pres-
ence of a feedback system. This paper demonstrates that
this instability is a general feature of storage rings with
a transverse low-frequency feedback system which damps
the rigid (m=0) modes but attempts to leave the head-tail
(m=1) modes unaffected. The growth rate is an effect of
transverse mode coupling, but doesn’t have a threshold.
The growth rate increases quadratically (or even cubically
under some assumptions) with current for small currents
for a given feedback gain. For low gains, the effect is linear
in the feedback gain. The formulation given is based on a
Vlasov equation analysis, incorporating an impedance-like
representation for the feedback system [2]. The associated
growth rates for them = 1 modes can be computed in
the presence of an arbitrary impedance and feedback trans-
fer function. In general, one needs to consider impedance
together with the feedback system to get the correct ef-
fect; ignoring the impedance will give the incorrect result.
The effects can be computed just as easily for a symmetric
multibunch system as for a single-bunch system.

1 INTRODUCTION

This paper approaches the analysis of the stability of the
beam in a circular storage ring under the influence of col-
lective effects and feedback using the Vlasov equation.
An equilibrium distribution of particles is assumed, and
perturbations to that distribution are Fourier analyzed in
turn number. The resulting equations will only have self-
consistent solutions for certain eigenfrequencies. If these
eigenfrequencies have positive imaginary parts, the system
is unstable.

The question to be addressed is what effect a transverse
feedback system has on these eigenvalues in addition to
the desired effect, namely to provide anegativeimagi-
nary part to one of the eigenvalues (the “rigid bunch” or
“m = 0” mode). It turns out that except in exceptional
circumstances, the feedback system will introduce a pos-
itive imaginary part into at least one of the “head-tail” or
“m = 1” modes, creating a potential instability.

The paper will first introduce the equations describing
the system in a fairly general form. Then the necessary
perturbation theory will be briefly reviewed. Finally, some
standard simplifications of the eigenvalue system are given,
which will allow one to easily apply the perturbation theory

results.

1.1 Eigenvalue System

Begin with the Fourier analyzed Vlasov equation. In ob-
taining this, one has assumed that one can normalize the
Hamiltonian consisting of the lattice without collective ef-
fects plus potential well distortion. The action-angle vari-
ables of this system areJ andθ. The Vlasov equation is
then Fourier analyzed in turn number (frequencyΩ) andθ
(indexm). Multiple bunches are allowed, but for simplic-
ity the equations are given assuming that all bunches have
the same charge and are symmetrically placed. This is not
essential to the method.

In addition, any tune shift with amplitude in the normal-
ized Hamiltonian is ignored. Adding tune shift with am-
plitude changes the character of the eigenfrequency spec-
trum, and a different analysis is required. The analysis
here holds to the extent that the frequency shifts from their
zero-current values are large compared to the nonlinear fre-
quency spread.

With these assumptions, the eigenvalue equation can be
written

[
Ω − m · ω + iβc

∂

∂s

]
Ψmp(J , s) =

i(2π)3
q2NM

γmqL
m · ∂Ψ0

∂J

∑
m̄

p̄=p+p′M

[

∫
ZFB

mm̄(J , J̄ , s, s̄, ωp̄)e−ip̄ω0(s−s̄)/βcΨm̄p(J̄ , s̄) dJ̄ ds̄

+
∫
Zmm̄(J , J̄ , s, ωp̄)Ψm̄p(J̄ , s) dJ̄

]
. (1)

Hereβc is the velocity of a particle with chargeq and mass
mq following the ideal orbit of lengthL. ω0 is the angu-
lar circulation frequency for that ideal particle.γ is just
(1 − β2)−1/2. There areM bunches withN charges in
each bunch. The frequencies of oscillation for a single par-
ticle in the field of the lattice plus potential well distortion
(due to an equilibrium distributionΨ0(J)) areω. Ω is the
eigenvalue which we’re trying to find, with eigenfunctions
Ψmp(J , s) which are periodic ins. ωp is a shorthand for
pω0 + Ω.

The functionZmm̄(J , J̄ , s, ω) represents the interac-
tion due to passive objects described by an impedance; it
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is defined to be

Zmm̄(J , J̄ , s, ω) =∑
α

zα(ω, s)Yαm(J , ω, s)Ỹ ∗
αm̄(J̄ , ω, s) (2)

Herezα(ω, s) is the impedance of typeα per unit length
at the points. For example, it might be the transverse
impedance per unit length, or the longitudinal impedance
per unit length multiplied byβc/ω. Yαm is defined to be

Yαm̄(J , ω, s) =
1

(2π)3

∫
fα(J ,θ, s)eiωz(J ,θ,s)/βce−im·θd3θ (3)

and Ỹαm̄ is the same except withfα replaced bygα. fα
andgα are part of the definition of the impedance:fα mul-
tiplied byzα (or really its Fourier transform, the wake func-
tion) multiplied by the integral ofgα times the distribution
gives a function whose gradients are the collective force on
a test charge. For example, for a transverse wake, bothfα
andgα would be the coordinatey written in terms of action-
angle variables. For a longitudinal wake, bothfα andgα
would be 1. The functionz in the exponent is just the ar-
rival time relative to the arrival time a particle following the
ideal orbit, multiplied by−βc.

Transverse wakes are of particular interest for this paper,
and bothYαm(J , ω, s) andỸαm(J , ω, s) for that case are

1
2π

√
2Jyβy(s)ei[±∆ψy(s)+m∆ψz(s)](i)m

Jm

(
(ω ∓ ωξ)σz(s)

βc

√
2Jzβγmqc

ε`

)
. (4)

m = (0,±1,m) here.∆ψy,z(s) are the phase advance at
a points relative to a phase linearly advancing withs, ωξ is
ξyωy/η, ξy is the chromaticity,η is the frequency slip fac-
tor (positive above transition),σz is the r.m.s. bunch length
(in dimensions of length), andε` is the r.m.s. longitudinal
emittance in energy-time units.

The functionZFB
mm̄(J , J̄ , s, s̄, ωp) represents the inter-

action due to the feedback system. It can be written as

ZFB
mm̄(J , J̄ , s, s̄, ω) =∑

α

zFB
α (ω, s, s̄)Y ∗

αm(J , ω, s)Ỹαm̄(J̄ , ω, s̄) (5)

Herezα(ω, s, s̄) is the Fourier transform of the feedback
response per unit length ats per until length of pickup at̄s.
The equations are somewhat simplified if one assumes that
ZFB

mm̄ can be written in the form

ZFB
mm̄(J , J̄ , s, s̄, ω) =

Z̄FB
mm̄(J , J̄ , s, ω)δ

(
s− s̄− ∆s(s)

)
eiω∆s(s)/βc (6)

2 PERTURBATION THEORY

Now one must break the eigenvalue equation (1) into a “un-
perturbed” part plus a perturbation part. The perturbation
will consist of the feedback term plus the impedance terms
for which m 6= m̄. The reason for not using the zero-
current system as the unperturbed system is that it is desir-
able to be able to do nondegenerate perturbation theory: for
zero current, all the radial modes corresponding to a single
azimuthal mode index have degenerate eigenfrequencies.

2.1 Nondegenerate Perturbation Theory

Begin with a matrixAwith eigenvaluesξk and correspond-
ing eigenvectorswk, such thatAwk = ξkwk. Assume that
the ξk are all different. There are also vectors̃wk such
that w̃†

kw` = δk`. Say we want to find eigenvectors and
eigenvalues forA + εB, whereε is small. Denote the new
eigenvectors and eigenvalues through(A+ εB)vk = λkvk,
and writeλk andvk as power series inε:

λk =
∑
`

λk`ε
` vk =

∑
`

vk`ε
` =

∑
`m

ck`mε
`wm (7)

Then equate equal powers ofε and multiply byw̃†
m in the

original eigenvalue equation, and chooseλk = ξk and
vk = wk. Assuming nondegeneracy, the first few coeffi-
cients are:

λk1 = w̃†
kBwk ck1m =

w̃†
mBwk
ξk − ξm

(1 − δkm) (8)

λk2 =
∑
j 6=k

w̃kBwjw̃jBwk
ξk − ξj

(9)

ck2m = (1 − δkm)

[∑
j 6=k

w̃†
mBwjw̃

†
jBwk

(ξk − ξj)(ξk − ξm)

− w̃†
mBwkw̃

†
kBwk

(ξk − ξm)2

]
(10)

λk3 =
∑
j 6=k
n6=k

w̃†
kBwjw̃

†
jBwnw̃

†
nBwk

(ξk − ξn)(ξk − ξj)

−
∑
j 6=k

w̃†
kBwkw̃

†
kBwjw̃

†
jBwk

(ξk − ξj)2
(11)

2.2 Feedback

One can now use this perturbation expansion to find the
eigenvalues in the presence of azimuthal mode coupling
and feedback. Assume that the mode to be damped by the
feedback system isk = 0.

Examine each order in perturbation theory. To first order,
λ0 shifts by εw̃†

0Bw0. This is the intended effect of the
feedback system, and thereforeB is generally chosen so
that this is a pure negative imaginary number. The second
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order terms give

λ02 =
∑
k 6=0

w̃†
0Bwkw̃

†
kBw0

ξ0 − ξk
λk2 =

w̃†
kBw0w̃

†
0Bwk

ξk − ξ0

If there were no feedback, these would just give the stan-
dard mode coupling effects; for a single bunch with wake-
fields lasting less than one turn, these would be purely real
sincew̃†

kBw0 = −[w̃†
0Bwk]

∗.
With a feedback system, one can writeB = BZ + BF ,

BZ being the term from the impedance,BF coming from
the feedback. For a feedback system where the feedback
response is for a short time, and when the feedback is de-
signed to only give damping to them = 0 mode, one finds
thatw̃†

kBFw0 = [w̃†
0BFwk]

∗. Thus, there are terms inλk2
which for a single bunch would be purely imaginary due to
the opposite symmetries ofBF andBZ :

w̃†
kBFw0w̃

†
0BZwk + w̃†

kBZw0w̃
†
0BFwk

ξk − ξ0
(12)

Finally, the dominant contribution of the feedback to the
third order term is

λk3 =
w̃†

0Bw0w̃
†
kBw0w̃

†
0Bwk

(ξk − ξ0)2
=
λ01λk2
ξk − ξ0

(13)

There is also an additional term which doesn’t involve
the feedback, as well as an additional effect onλ0 which
should be small compared to the first order effect.

To find the growth or damping rate in the higher order
mode due to the feedback system from these third order
terms, multiply the growth rate for them = 0 mode by
the shift in the higher order mode due to azimuthal mode
coupling divided by the separation between the two modes.
With mode coupling, the mode frequencies generally ap-
proach each other more rapidly with increasing current than
they would if there were no mode coupling. Thusλk2 and
ξk − ξ0 will have opposite signs (they are complex num-
bers in the multibunch case, so this is really “their complex
phases differ by aroundπ”). Therefore a feedback system
which damps them = 0 modes will cause the higher order
modes that it couples to to grow! In the single bunch case
wherem = 0 andm = 1 are coupled, this is exact (one
must be careful with synchro-betatron modes [3]: the+ωy
m = 0 mode does not give instability when approaching
the−ωy m = 1, 3, . . . mode, and a feedback system will
damp these modes as well: if the modes give instability
when coupling, then the feedback system will cause insta-
bility).

Whether the second or the third order term will domi-
nate will depend on an interplay between the mode cou-
pling terms and the two dominant terms that the feedback
will induce (the direct term and the coupling terms). If the
coupling termw̃†

kBw0 induced by the feedback is negligi-
ble (this will be true if the phase of the feedback transfer
function is kept constant, and the delay is exactly correct),
then the third order term will dominate. While this is often

assumed, in practice, even with a very narrow band feed-
back system such as that used in the LHC, this is not the
case, and the second order term dominates.

Finally, this discussion assumes that the feedback has no
direct effect on the modes other thank = 0 (neglecting
w̃†
kBwk for k 6= 0). Such a feedback system would have to

have a rather large bandwidth: it must have gain at frequen-
cies higher than those corresponding to the bunch length.

3 EXAMPLE: GAUSSIAN BUNCHES

The eigenvalue problem for transverse impedance and
feedback can be simplified by ignoring a) terms due to the
s variation of the impedance and feedback; b) coupling be-
tween modes nearΩ = +ωy and modes nearΩ = −ωy;
and c) terms which are at least first order inεy/εz, the ra-
tio of the transverse to longitudinal emittance. Under these
assumptions, the transverse eigenvalue problem becomes

(Ω − ωy −mωs)Ψm`p = −i q
2NM

2γmqL2

∑
¯̀m̄

p̄=p+p′M

[〈βyZ⊥(ωp̄)〉 + βy〈ZFB
⊥ (ωp̄)e−ip̄∆s/βc〉]

hm`(ωp̄)h∗m̄¯̀(ωp̄)Ψm̄¯̀p (14)

For Gaussian bunches, thehm` are [4]

hm`(ω + ωξ) =
1√

`!(m+ `)!

(
σ`ω√
2βc

)m+2`

e−σ
2ω2/2β2c2

The eigenfunctions of the “unperturbed” problem will
of course vary depending on what the impedance is. How-
ever, because the impedance is generally dominated by fre-
quencies which are small or comparable to the frequencies
corresponding to the bunch length, one can safely consider
only the` = 0 terms in (14), and the results will be cor-
rect to within about 20%. Since there is only one term for
a givenm, one can immediately obtain estimates of this
effect.

In the LHC, for example, the second order terms domi-
nate, giving growth rates which are in the range of 10000-
20000 turns (see Figs. 5 and 7 of [5], comparing to Fig. 3).
This is roughly a factor of 4 slower than what one expects
to be able to tolerate because of Landau damping.

Finally, note that the perturbation theory arguments are
very general, and apply to longitudinal as well as transverse
impedances and feedback.
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