# A CAVITY WITH CIRCULAR WAVEGUIDES FOR HOM DAMPING<sup>+</sup>

F. Schönfeld<sup>\*</sup>, E. Weihreter, BESSY, Berlin, Germany R. Apel, H. Henke, Inst. f. Theoret. Elektrotechnik, Technische Universität Berlin

# **1 ABSTRACT**

The suppression of multibunch instabilities driven by higher order modes (HOM) of the rf-cavities is one of the challenges of third generation synchrotron radiation sources. A cavity with three radial waveguides for HOM-damping has been proposed by Concaurio and Arcioni. We have studied a very simple configuration based on a 500 MHz pill box with three circular waveguides. Numerical simulations and measurements of a low power model cavity are presented.

#### **2** INTRODUCTION

Multibunch instabilities driven by HOMs of the accelerating cavities are the cause of potential performance limitations for high luminosity e<sup>+</sup>e<sup>-</sup>rings and for high brilliance synchrotron light sources. Various strategies may be adopted to cope with these limitations, such as the use of ,single mode<sup>+</sup> cavities with inherently low R/Q for all modes, damping of the HOMs using suitable coupling systems, detuning of the HOMs by temperature, control of the cavity or by additional tuners, and the use of feedback systems.

The ,ideal' cavity for an electron storage ring resonates only in the fundamental mode with a high shunt impedance, whereas the impedance of all other modes is negligible. Much effort has been spent in several laboratories to develop adequate cavities compromising low HOM impedances with a high shunt impedance of the accelerating mode. Many of these cavity designs are based on the idea of a single trapped mode resonator (STMR) of Concaurio and Arcioni [1] to extract HOM energy via three broadband waveguides where the cut-off frequency of the waveguide (WG) is low enough to couple to the lowest HOM, but high enough to keep the fundamental mode trapped.

# **3** GENERAL CONSIDERATIONS

WGs with a rectangular cross-section have been adopted for many HOM damped cavity projects [2]. These offer the advantage that for a given cut-off frequency the cross-section area of the WG can be minimized by choosing a high aspect

\* present address: Siemens AG, ECPOT, Berlin

ratio or by introducing a ridge. From the manufacturing point of view, however, the combination of rectangular WGs with a rotationally symmetric cavity is relatively complicated. WGs with a circular cross-section fit more naturally with structures of rotational symmetry. On the other side comparatively large WG diameters have to be accepted to obtain a sufficiently low cut-off frequency to cover also the lowest HOMs.

In principle elliptical WGs or ridged circular WGs could be used to reduce the cross-section, sacrificing however substantially the engineering simplicity related with circular WGs. Another possibility is to use smaller circular WGs together with single mode damping antennas for one or a few of the lowest HOMs.

#### **4 MEASUREMENTS**

For simplicity we have built a pillbox like model resonator (462 mm in diameter, 276 mm in height) from sheet aluminum fitted with 3 circular WGs in radial direction (see Fig. 1). Commercial foam absorber material (type LS) from ESCOMP for low power applications was cut into cones of 620 mm length and inserted into the WGs at sufficient distance from the cavity boundary to limit the reduction of the fundamental mode  $Q_o$  to about 15%. The WGs are mounted with special flanges for the ease of measurements with different WG diameters.



Fig.1: Low power model cavity for HOM damping measurements with 3 circular WGs.

<sup>&</sup>lt;sup>+</sup> Funded by the Bundesministerium f
ür Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Land Berlin

HOMs were excited with the help of small capacitive antennas introduced on axis into the cavity for monopole modes and off axis for dipole and quadrupole modes which couple to the axial field  $E_z$ . To characterize the 'naked' cavity without the WG absorbers, the unloaded  $Q_o$  has been determined for all observed HOMs in the frequency range up to 3 GHz. Measurements of the coupling factors  $\beta_1$  and  $\beta_2$  of both antennas in reflection and the determination of the loaded  $Q_\ell$  in transmission give  $Q_o = Q_\ell (1 + \beta_1 + \beta_2)$ . After mounting the WG absorbers to the cavity the loaded  $Q_\ell$  of the STMR has then been measured for different WG radii (r = 75/100/130 mm). All measurements were performed with a PC controlled setup including a HP 8753D network analyser.

Much effort has been paid for the identification of the HOMs, which can be classified in good approximation in  $TM_{mnp}$  eigenmodes. With the help of electric and magnetic field probes inserted through small holes on the cavity periphery (3 mm ø), the orientation and the relative strength of the

| theoretical   |            |                       | measurements |       |                |          |          |
|---------------|------------|-----------------------|--------------|-------|----------------|----------|----------|
| TM            | ΓM pillbox |                       | resor        | ator  | damping system |          |          |
| mnp           | $Q_0$      | $\frac{R_{I}}{Q_{0}}$ | fo           | $Q_0$ | $Q_{l1}$       | $Q_{l2}$ | $Q_{l3}$ |
|               |            | [Ω]                   | [MHz]        |       |                |          |          |
| Monopol Modes |            |                       |              |       |                |          |          |
| 011           | 28341      | 4058                  | 736          | 10237 | 8863           | 4380     | 918      |
| 020           | 51347      | 0.50                  | 1140         | 16639 | 5207           | 23       | 21       |
| 012           | 36104      | 8.45                  | 1194         | 10979 | 1797           | 124      | 132      |
| 021           | 37125      | 28.36                 | 1263         | 13382 | 1000           | 92       | 89       |
| 022           | 41458      | 29.16                 | 1575         | 12828 | 232            | 222      | 32       |
| 013           | 43115      | 2825                  | 1703         | 19553 | 287            | 257      | 181      |
| 030           | 64290      | 6.78                  | 1787         | 32066 | 305            | 249      | 201      |
| 031           | 45153      | 6.54                  | 1868         | 15503 | 298            | 264      | 84       |
| 023           | 46586      | 17.59                 | 1989         | 14680 | 84             | 74       | 21       |
| 032           | 47777      | 0.77                  | 2092         | 21049 | 248            | 200      | 180      |
| 014           | 49316      | 1.25                  | 2229         | 18876 | 128            | 127      | 57       |
| 033           | 51376      | 7.13                  | 2419         | 17756 | 75             | 20       | 73       |
| 040           | 75046      | 2.18                  | 2436         | 31115 | 71             | 31       | 51       |
| 024           | 51795      | 10.12                 | 2454         | 16886 | 58             | 38       | 23       |
| 041           | 52185      | 3.13                  | 2495         | 18158 | 134            | 183      | 23       |
| 042           | 53948      | 8.12                  | 2667         | 17504 | 92             | 101      | 98       |
| 015           | 54889      | 0.65                  | 2761         | 21466 | 39             | 25       | 21       |
| 034           | 55410      | 9.87                  | 2813         | 30408 | 41             | 30       | 32       |
| 043           | 56551      | 2.56                  | 2930         | 17807 | 31             | 31       | 35       |
| 025           | 56551      | 6.07                  | 2945         | 23420 | 152            | 123      | 108      |
| Dipol Modes   |            |                       |              |       |                |          |          |
| 110           | 42780      | 11.05                 | 792          | 13699 | 9171           | 1510     | 190      |
| 111           | 32366      | 23.13                 | 960          | 14006 | 10779          | 2069     | 247      |
| 112           | 38298      | 6.25                  | 1344         | 12151 | 918            | 624      | 764      |
| 120           | 58257      | 8.63                  | 1468         | 22577 | 602            | 486      | 35       |
| 121           | 41327      | 0.65                  | 1565         | 13095 | 251            | 31       | 31       |
| 113           | 44642      | 1.88                  | 1811         | 18143 | 219            | 210      | 54       |
| 122           | 44640      | 9.94                  | 1826         | 13555 | 54             | 23       | 37       |
| 130           | 69708      | 0.30                  | 2101         | 28706 | 84             | 54       | 32       |
| 131           | 48669      | 13.49                 | 2170         | 15849 | 177            | 169      | 171      |
| 123           | 48920      | 9.67                  | 2193         | 17410 | 201            | 149      | 189      |
| 114           | 50232      | 0.71                  | 2312         | 17307 | 98             | 115      | 99       |
| 132           | 50809      | 3.19                  | 2366         | 19870 | 172            | 122      | 93       |
| 124           | 53490      | 6.30                  | 2622         | 19218 | 79             | 81       | 70       |
| 133           | 53869      | 0.24                  | 2659         | 18041 | 34             | 35       | 40       |
| 140           | 79773      | 5.41                  | 2752         | 37712 | 110            | 148      | 117      |
| 141           | 55330      | 69.00                 | 2805         | 2220  | 38             | 34       | 27       |
| 115           | 55560      | 0.31                  | 2829         | 29138 | 30             | 27       | 28       |

Tab. 1: Results of Q-measurements of the lowest monopole (m = 0) and dipole (m = 1)  $TM_{mnp}$ -modes for the 'naked' 500 MHz model cavity and for the STMR with different WG radii of 75, 100, and 130 mm.

fields can be obtained. In addition perturbation measurements pulling a needle shaped bead through the cavity in axial direction gave information on the longitudinal distribution of the  $E_r$  field component.

Table 1 summarizes the experimental results for the 'naked' resonator and for the STMR. Also theoretical  $Q_o$ -values for an ideal pillbox are included for comparison. The measurements for the STMR show that the loaded Q's are gratifyingly small (between a few 10 to about 300) at frequencies significantly above the cutoff of the WG ( $f_{co}$  = 1170./878./676. MHz for a WG radius r = 75/100/130 mm). On the other side the efficiency of the WG absorbers is reduced at lower frequencies, as expected, keeping more and more modes trapped with increasing WG cutoff frequency. For a WG radius of r = 130 mm the results indicate that circular WGs may be an interesting alternative to other STMR-schemes with more complicated WG structures. Figure 2 demonstrates the effective damping of all m = 0,1 modes observed up to 3 GHz.



Fig. 2: Q-values for the 'naked' resonator and for the STMR using 3 WG absorbers with r = 130 mm.

#### **5 NUMERICAL CALCULATIONS**

For the optimisation of a STMR it is helpful to have numerical simulation techniques at hand. Two different methods developed by Kroll and Yu [2] and by Slater [3] have been applied to calculate the external Q for an open cavity which can then be compared with the measurements using the relation  $1/Q_{ext} = 1/Q_{\ell} - 1/Q_{o}$ .

As shown in Fig. 3 for several modes of the r = 130 mm case, the theoretical models agree fairly well. The measured  $Q_{ext}$  values are generally larger than the theoretical predictions, which may partially be attributed to the imperfectness of the absorbers. Except for the lowest mode  $(TM_{011})$  there is a qualitative agreement between theory and experiment which allows to use the simulations in the design process with some care.



Fig. 3: Comparison of theoretical and experimental results for a STMR with circular WGs (r = 130 mm).

## **6** SIMULATION OF A HOM-ABSORBER

The absorber used for the above experiments can neither be used at high power levels nor under UHV conditions. Starting from the design of a rectangular WG absorber developed at SLAC [5] we have simulated a circular WG lead with the tapered absorber shaped as an inverse truncated cone (see inset in Fig. 4). This configuration has the advantage of a moderate field strength at the surface of the absorber material and allows effective transfer of the generated heat to the metallic WG boundary. Figure 4 shows the preliminary results of a geometrical optimisation using MAFIA to calculate the reflection coefficents for the first three WG modes. With the parameters  $D_1 = 26$  cm,  $D_2 = 12$ cm,  $\ell_{abs} = 50$  cm,  $\ell_g = 15$  cm the reflection is in the 10% range for frequencies well above the cutoff of the respective mode, which looks promising. The simulation is based on the properties of AlN-40% Si given in [6]. This material is a lossy dielectric ceramic with a specific outgasing rate below  $10^{-10}$  torr  $\cdot \ell/cm^2 \cdot s$ ) compatible with the necessary UHV vacuum conditions. It can be brazed to a copper surface without previous metalisation.



Fig. 4: Reflextion coefficient S11 for the first three WGmodes.

As an alternative to putting rf absorbing material into the vacuum, a circular WG to coax transition with a broadband ceramic window and an external load has been considered too. An outline design of such a transition is given elsewhere in these preceedings [7].

#### 7 CONCLUSIONS

The concept of a simple HOM damped resonator based on a pillbox with three circular WG absorbers allows to reduce the Q-values from typically 10000 to a few 100 and below, a level competitive with other HOM damping schemes. This offers interesting possibilities for the design of rather simple STMR structures. Numerical techniques for the calculation of the external Q are accurate enough to help in the design process.

## 8 REFERENCES

- [1] C. Concaurio, P. Arcioni "A new HOM-free accelerating resonator" Proc. EPAC (1990) p. 149
- [2] R. Rimmer, F. Voelker, G. Lambertson, M. Allen, J. Hodgeson, K. Ko, R. Pendleton, H. Schwarz, N. Kroll "An RF cavity for the B-Factory" Proc. PAC (1991) p. 819
- [3] N. M. Kroll, D. U. L. Yu, Computer determination of the external Q and resonant frequency of waveguide loaded cavities, Part. Accelerators, 34 (1990) p. 231
- [4] J. C. Slater "Microwave Electronics", V. van Nostrand Co. Inc. N.Y, 1950
- [5] R. Pendleton, K. Ko, C. Ng, H. Schwarz, J. Corlett, J. Johnson, R. Rimmer ,,Broad-band, multi-kilowatt vacuum, HOM waveguide loads for the PEP-II RFcavity SLAC-PUB-6552 (1994)
- [6] AlN-Material (1990) p. 231
- [7] F. Schönfeld, E. Weihreter, Y. C. Tsai, K. R. Chu (these proceedings)