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Abstract

Decoherence is the dephasing of individual particle motions
due to a spread of oscillation frequencies. This has the ef-
fect of “washing out” any undriven collective motion, such
as might occur by displacing the beam. When the frequency
spread arises from amplitude dependence of tune, one must
damp the beam (by feedback) well before decoherence is
completed, so as to preserve emittance. By means of the
Vlasov equation, in action–angle (J; �) coordinates, we cal-
culate the evolution of the transverse centroid, of a particle
distribution which, before displacement, has the binomial
form  0(J) = (1 � J=J0)

�. The spread of betatron an-
gular frequency, !, is modelled by a linear dependence on
the action as bJ , where b is the strength of an octupole like
force arising from, say, image charge and the chromaticity is
assumed to be zero. For free oscillations, the amplitude re-
mains constant and the evolution of the distribution is com-
pletely determined by the retarded angle, ��!t�bJt. Only
the dipole moment of the off-set distribution is required in
performing the assemble averaging for the beam centroid.
The amplitude of the centroid oscillation is found to decay
inversely with time t to leading order, as (bt)�1 for a distri-
bution with � = 1, and as (bt)�2 for � = 2; 3.

1 INTRODUCTION

When a previously stationary charged particle beam is dis-
placed transversely from the closed orbit, it oscillates from
side to side. Experimentally, the oscillation can be observed
with a beam position monitor, which gives the centroid sig-
nal. In the absence of collective effects, the oscillationdeco-
heres and the centroid signal decays. Decoherence is caused
by a spread in the betatron tunes, and arises from nonlin-
earity, due to the dependence of tune on amplitude, and/or
from chromaticity due to the dependence of tune on longi-
tudinal momentum. We limit ourselves to coasting beams
only, and assume the tune spread comes entirely from non-
linearity. Nonlinear forces are always present due to image
charges and high multipole fields in the magnets.

It is of interest to calculate the motion of the beam cen-
troid under decoherence. This information is relevant when
interpreting beam centroid measurements and useful in the
design of a feedback damping system. The decoherence of a
Gaussian amplitude distribution, as appropriate for electron
beams, due to nonlinearity and chromaticity had been con-
sidered in [1, 2]. Here we consider the binomial amplitude
distribution which is more suitable for proton beams which

typically lack radiation damping. Unlike the Gaussian dis-
tribution which extends indefinitely, the binomial distribu-
tion has well defined limits. Hence, in comparison, a bino-
mial distribution has a limited tune spread due to nonlinear-
ity, while a Gaussian distribution has an infinite spread and
may lead to over estimating of the rate of decoherence.

2 DECOHERENCE DUE TO
NONLINEARITY

The decoherence of a displaced particle distribution func-
tion,  , satisfies the Vlasov equation. First, we outline the
formal solution of the Vlasov equation for any general dis-
tribution in coordinate and momentum (x; _x) using action
and angle coordinates (J; �). We then apply this solution to
the case of a displaced binomial distribution and calculate
the beam centroid by forming the ensemble average of the
displacement.

The action and angle coordinates are defined in terms of
the phase space coordinates (x; _x) as

p
2J cos � = x=

p
�; (1)

p
2J sin � = �

p
� _x+ _�x=2

p
�; (2)

where�(s) is the betatron function and the derivative is with
respect to the path length s. The averaged Hamiltonian for a
particle in the presence of a octupole-like force can be writ-
ten

H = !J +
1

2
b J2 +

1

3
(cos 4� + 4 cos 2�) bJ2; (3)

where ! is the unperturbed angular frequency and b is the
averaged octupole strength over one period. The deriva-
tive of the last two terms with respect to � gives the rate
of change of J and leads to distortion of the closed phase
space paths. However, the distortion is periodic in � and
averages to zero. With the approximate Hamiltonian, the
Vlasov equation can be written

@ 

@t
+ (! + b J)

@ 

@�
= 0; (4)

where the time parameter t is equal to s divided by the beam
velocity. The evolution of an initial distribution (J; �) that
satisfies the equation is easily found to be

 (J; �; t) =  0[J; � � (! + b J)t]: (5)

Note that the solution has the same functional dependence
on J as the initial distribution, which is consistent with the



approximation that J is a constant. As time increases, the
distribution (J; �; t) disperses from a localized distribution
and eventually occupies the annulus defined by the smallest
and largest values of J in the distribution.

The stationary binomial amplitude distribution can be
written in terms of the action J as

 0(J) = k

�
1� J

J0

��
; (6)

= 0 for J > J0;

where J0 is the maximum action, k is the normalization
factor, and � is a positive number which characterizes the
sharpness of the distribution. See Figure 1. Without loss of
generality, assume at time t = 0 the distributionis displaced
by a distance D but with no change in the divergence. The
displaced distribution now becomes a function of both J
and �. The centroid is calculated by taking the ensemble av-
erage of the displacement

p
2J cos �,

x(t) =

Z Z p
2J cos �  [J; � � (! + b J)t] dJ d�; (7)

where the integration limitsare the increasingly complicated
boundary of the displaced distribution. Note, the difficulty
of prescribing the boundary does not arise for distributions
which extend to infinity, such as the Gaussian, because the
shifted distribution still extends to infinity and over all an-
gles. However, the integration limits can be simplified, if
we Taylor expand the displaced distribution in terms of the
stationary distribution whose boundary is simple and well
defined. We first Taylor expand  (x � D; _x) in the (x; _x)

coordinates because the displacement is defined in this coor-
dinate system and then make a change of variables to (J; �)

as required by Equation 7. The expansion up to third order
in D is

 (J; �) =  0(J) +D 0
0
(J)
p
2J cos(�)

+D2f 00
0
(J)(

p
2J cos(�))2 + 2 0(J)g

+D3f 000
0
(J)(

p
2J cos(�))3 + 6 00

0
(J)
p
2J cos(�)g ; (8)

where the primes denote derivatives w.r.t. J . Substituting
the expansion (8) into Equation 7, we can consider the con-
tribution of each order to the integration. It is clear that all
the even order terms do not contribute because of the odd
powers of cos �. The next order that contributes is the third,
which is two orders of magnitude smaller if D �

p
2J0.

Figure 1: The binomial distribution for � = 1,2,3,4.

Figure 2: Beam centroid from turns 0 to 1000.

Figure 3: Beam centroid from turns 1000 to 2000.



For displacements which are small compared to the half
width of the distribution, the contributions of the third and
higher orders are negligible and can be neglected. To first
order, the beam centroid can be evaluated with

x(t)= D

Z
J0

0

Z
2�

0

2 0
0
(J)J cos � cos[��(!+bJ)t]dJd�: (9)

Generally, the integration can be evaluated analytically
for positive integer values of � since the integrand is just a
J polynomial times cos �. For fractional �, there may be
only a few cases where the integral can be evaluated ana-
lytically. Specifically, we have obtained expressions for the
beam centroid x(t) for binomial distributions with � = 1/2,
1, 2, 3, and 4. For � = 1, we have

x(t) =
2D

(�! t)2

�
cos(!t) � cos(b!t)
��! t sin(b!t)

�
; (10)

where �! = bJ0, which is the difference between the un-
perturbed angular frequency and the maximum frequency b!
at the edge of the distribution. For � = 2, 3, and 4, we have
respectively

x(t) =
6D

(�! t)3

�
�! t cos(!t) + �! t cos(b!t)

+2 sin(!t) � 2 sin(b!t)
�

(11)

x(t) =
12D

(�! t)4

8<
:

4�! t sin(!t) + 2�! t sin(b!t)
+6 cos(b!t)� 6 cos(!t)

+(�! t)2 cos(!t)

9=
; (12)

x(t)=
20D

(�! t)5

8<
:
(�! t)3 cos(!t) + 6(�! t)2 sin[(!t)

�18�! t cos(!t) � 6�! t cos(b!t)
24 sin(b!t)� 24 sin(!t)

9=
; (13)

These expressions show that the oscillation frequency of the
centroid contains components of! and b! and is time depen-
dent. For � = 1=2, the expression involves hypergeomet-
ric series and is too lengthy to report here; but a plot for this
case is shown in Figure 4.

3 DISCUSSION

Plots of the beam centroid for all the five values of � are
shown for two time ‘windows’ in Figures 2, 3, and 4. The
initial displacements for all cases are normalized for com-
parison. To exaggerate the effect of decoherence, the oc-
tupole strength is set such that �! = 0:01!. For � = 1,

Figure 4: Beam centroid for � = 1=2

the amplitude decreases initially as 1=t2; and then, at later
times, as 1=t. This is evident in Equation 10. There is some
beating of the envelope but never completely destructive.
For � = 2, the amplitude decreases as 1=t2 at all times,
and the envelope beating is periodic; this can be seen from
Equation 11, where the components have equal amplitudes.
For � = 3, the amplitude decreases as 1=t3 initially and as
1=t2 at later times; there is some beating but it is irregular.
For � = 4, the amplitude starts to decrease at a slower rate
than for � = 2; 3 ; and at longer times it falls as 1=t2. There
is no prominent beating.

To understand this qualitative behaviour, one must real-
ize that the centroid is proportional to the ensemble average
of  0

0
� J , and that there are competing effects. For small

values of � the distributions are ‘flat’ and the derivative of
 is small, but there are proportionately more particles at
large amplitudes. For large values of �, the magnitude of
the derivative is large, but (for distributions normalized to
a fixed J0) there are rather fewer large amplitude particles.
One can imagine two extreme cases that show no decoher-
ence: (i) when � ! 1 (and we have a �-function distri-
bution), and (ii) when � = 0 (and we have a �-function
derivative). The effect of distribution gradient on the rate
of decoherence was previously noted by Hereward[3]; and
is the reason why the distribution with � = 1 decoheres
more quickly than for � = 1=2, despite the latter case hav-
ing more large amplitude particles. Further, according to
Equation 9, a uniform distribution (� ! 0) does not de-
cohere (x = D cos b!t) because there is no gradient.

4 CONCLUSION

We have calculated the motion of the beam centroid as a
displaced binomial amplitude distributiondephases. In per-
forming the ensemble average, the displaced distribution
was Taylor expanded in terms of the stationary distribution
to make use of its simple boundary; with the result that, to
first order, the rate of decoherence depends on the average
gradient of the stationary distribution.
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