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Abstract

The diffraction model of a cavity, suggested by Lawson
[1], Bane and Sands [2] is generalized to a step-out tran-
sition. Using this model, the high-frequency impedance is
calculated explicitly for the case that the transition step is
small compared with the beam-pipe radius. In the diffrac-
tion model for a small step-out transition, the total energy is
conserved, but, unlike the cavity case, the diffracted waves
in the geometric shadow and the pipe region, in general,
do not always carry equal energy. In the limit of small
step sizes, the impedance derived from the diffractionmodel
agrees with that found by Balakin, Novokhatsky [3] and
also Kheifets [4]. This impedance can be used to compute
the wake field of a round collimator whose half-aperture is
much larger than the bunch length, as existing in the SLC
final focus.

1 SHORT CAVITY (REVIEW)

The high-frequency impedance of a cylindrically symmetric
short cavity structure in an otherwise smooth vacuum cham-
ber pipe can be estimated by a diffractionmodel as described
in Refs. [1, 2]. It is helpful to first review this model, before
generalizing it to a step-out transition.

Let b be the radius of the smooth beam pipe, g the cavity
gap length, and d its depth. A schematic is shown in Fig. 1.
As a beam current J0 = Ĵ0 exp(�i!(t � s=c)) enters the
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Figure 1: Schematic view of a short cavity

cavity along the beam pipe axis, a diffracted wave is gener-
ated at the cavity edge r = b. This diffracted wave propa-
gates down the beam pipe while spreading out radially due
to diffraction. At a longitudinal distance s behind the en-
trance edge of the cavity, the radial spread of the diffracted
wave is about

�y(s) �
1

2�

r
�s

2
(1)
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where � = 2�c=!. In the diffraction model of Refs. [1, 2,
5], the cavity gap length g is assumed to be short enough that
the wave has not spread out radially to reach the outer wall
of the cavity. Thus the outer cavity wall does not play a role
in determining the short range wake field, and the quantity
d does not enter the considerations.

In calculating the impedance of the above cavity struc-
ture, the wavelength � is assumed to be sufficiently short
that the diffracted wave populates only the radial region
close to r = b, and, in particular, neither penetrates much
into the depth of the cavity structure nor approaches the pipe
axis. In this case, one can approximate the cylindrical ge-
ometry near the r = b region by a Cartesian geometry and
represent the incoming beam wave by a planar wave with
Ey = �Bx = �2J0=(cb). The monopole longitudinal
impedance is then found to be [2, 5, 6]

Z
k

0 (!) = [1 + sgn(!) i]
Z0

2�3=2
1

b

r
cg

j!j
(2)

where Z0 = 377 
. The m 6= 0 longitudinal and transverse
impedances Zkm andZ?m are obtained by considering anmth
moment current Jm = Ĵm exp(�i!(t � s=c)): The corre-
sponding planar wave incident upon the cavity entrance is
Ey = �Bx = � 4

cbm+1
Jm cosm�; where � is the azimuth

at the cavity entrance. The final result is [2, 5]

Zkm(!) = [1 + sgn(!) i]
Z0

�3=2
1

b2m+1

r
cg

j!j
(3)

The transverse impedance follows from the Panofsky-
Wenzel theorem, Z?m(!) = cZ

k

m(!)=!. It has been shown
that exactly half of the diffracted wave energy is contained
in the geometric shadow region (outward diffracted), while
the other half is contained in the region propagating down
the pipe (inward diffracted) [2, 5].

2 STEP-OUT TRANSITION

Equations (2) and (3) apply at high frequencies and short
cavity lengths, when d �

p
�g=2=(2�): The purpose of

this paper is to extend the ’conventional’ diffraction model
just described to the case when the cavity gap length g is
long, and, thus, the above condition is violated. The cavity
structure in this case resembles a transition step in the vac-
uum chamber pipe. We further assume the step to be small,
i.e., b� d, so that we can still approximate the cylindrical
geometry by a planar one.

Figure 2(a) displays the geometry near r = b. Shown
shaded is the region populated by the diffracted wave. When



the latter reaches the outer radius after the step, it is reflected
by the pipe wall. This reflection can be represented by an
image beam current �J0 as shown in Fig.2(b).
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Figure 2: a) Diffracted waves near a step-out transition; b) equiv-
alent geometry with image current.
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Figure 3: Diffraction of plane wave on a screen.

The diffracted wave is then the same as that for a plane
wave incident perpendicularly upon a screen, which is il-
lustrated in Fig. 3. The parts of the screen with y0 > d and
y0 < �d are transparent to the incident wave, while the part
with �d < y0 < d is opaque. The wave amplitude at an
observation point located a longitudinal distance s behind
the screen and at a transverse distance y from the pipe axis,
is proportional to

a(y; s) /

"Z �d

�1

dy0 +

Z 1

d

dy0

#
ei!D=c (4)

where

D =
p
s2 + (y � y0)2 � s +

1

2s
(y � y0)2 (5)

and we have adopted a scalar wave model of the electromag-
netic waves [7] as was done in the ’conventional’ diffraction
model. Substituting Eq.(5) into Eq.(4) and dropping the os-
cillatory factor exp(i!s=c), we find

a(y; s) /

"Z
�d

�1

dy0 +

Z
1

d

dy0

#
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�
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n
[1� C (f+(y; s)) +C (f�(y; s))]

+i [1� S (f+(y; s)) + S (f�(y; s))]
o

where f�(y; s) �
q

2

�s
(y � d), and, by definition of the

Fresnel integrals,

C(x) + iS(x) �

Z x

0

dt ei�t
2=2 (6)

with C(1) = S(1) = 1=2. The energy flux F (y; s) is
proportional to ja(y; s)j2. By normalizingF (y; s) such that
for y !1 it is equal to the incident flux

F (y; s) ! F0 =
c

8�
(E2

y + B2

x) =
J20
�cb2

; (7)

we obtain

F (y; s) =
F0

2

n
[1� C(f+(y; s)) +C(f�(y; s))]

2

+ [1� S(f+(y; s)) + S(f�(y; s))]
2
o
:(8)

The total field energy contained in the diffracted wave pat-
tern is conserved [8], i.e., for all s, we haveZ d

0

dyF (y; s) +

Z 1

d

[F (y; s)� F0] = 0: (9)

In Fig. 4, the flux F (y; s)=F0 is depicted as a function
of y=d for several values of � � d

p
2=(�s). Before the

diffracted wave reaches the outer cavity wall (s � 8�2d2=�
or � � 1=(2�)), the flux is about the same as in the con-
ventional diffraction model. By contrast, for s � 8�2d2=�
or � � 1=(2�), the reflection from the outer pipe wall be-
comes important. In this region the asymptotic expression
for F (y; s) reads

F (y; s)

F0
� 1� 2�

h
cos

� �

�s
y2
�
+ sin

� �

�s
y2
�i

(10)

The second term on the right-hand side of Eq.(10) is a small
correction term, so that the energy flux far from the cav-
ity entrance edge is approximately equal to the unperturbed
value F0. However, this does not mean the field energy in
the inward diffracted wave diminishes as the wave propa-
gates down the beam pipe, because the diffracted wave is
spreading and is occupying larger volume as it propagates.

To derive the impedance, we first calculate the energy
loss of the beam. This is equal to the field energy stored in
the diffracted wave and, thus, it is proportional toZ d

0

dyja(y; s)j2 +

Z 1

d

dyja(y; s) � a(1; s)j2 (11)
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Figure 4: Energy flux F=F0 as a function of transverse position
at various distances z / 1=�2 behind the step-out.

The first term in Eq.(11) is proportional to the outward
diffracted wave energy in the geometric shadow region and
the second term represents the inward diffracted wave in
the pipe region. When expanding in � (after multiplication
with

p
2=(�s)), the first term is found to be: 2� � 4�2 +

4�3 + O(�5); and the second is: 2� � 4�3 + O(�5) [8].
In the long-distance limit � � 1, or z � 8�2d2=�, the
two terms become equal, which means that sufficiently far
away from the step the outward diffracted and the inward
diffracted waves contain equal amounts of energy. The loss
power for a small step size (d� b) is, therefore, given by

P0 � 2 � 2�b lim
s!1

Z d

0

F (y; s) dy: (12)

Performing the integration for s� 2d2=�, one finds [8]:

P0 �
4J20
cb

d: (13)

With F0 � J20=(�b
2c), the energy loss can be rewritten as

P0 � 2�b(F02d), which demonstrates that, in our model,
the total diffracted-wave energy is equal to the energy inci-
dent on the screen of Fig. 3. This equivalence also follows
from Babinet’s principle [7], when one considers the inverse
problem of a plane wave incident on a slit of width 2d.

The loss power is related to the impedance via P0 =

(ReZ
k

0 )J
2
0 , from which

ReZ
k

0 �
Z0

�b
d: (14)

Unlike the short-cavity impedance of Eq. (2), the high-
frequency impedance for a long cavity, or a step, is inde-
pendent of frequency !. Equation (14) agrees with the re-
sults of earlier treatments [3, 4] in the limit of small step

sizes d� b. It is intriguing that the impedance of Eq. (14)
can be obtained from the short-cavity impedance, Eq. (2),
by replacing the cavity length g with the distance 8�2d2=�
at which the diffracted wave reaches the outer beam-pipe
radius after the step (see Eq. (1)).

In the same manner as for a short cavity, considering
mth-moment currents allows the extension of the analysis
to the m 6= 0 impedances. In this case the incident flux is

Fm;0 =
4

�cb2m+2
J2m cos2(m�); (15)

and the loss power is obtained by integrating the diffracted
flux over the azimuth � with the final result:

Pm �
8d

(1 + �0m) cb2m+1
J2m (16)

where �0m denotes the Kronecker delta (�0m = 0 for m 6=

0). Equating Pm with the general expression (ReZ
k

m)J2m
yields the impedance for the mth-moment

ReZkm �
2Z0d

(1 + �0m) �b2m+1
: (17)

For small step sizes d, the dipole impedance (m=1) so ob-
tained agrees with that derived by an entirely different ap-
proach in Ref. [9]. This impedance can be used, for exam-
ple, to compute transverse collimator wake fields when the
apertures are larger than the bunch length, as is the case in
the SLC final focus [10].
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