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1 INTRODUCTION AND SUMMARY
The damping rings of the Next Linear Collider (NLC), at
any given time, will contain four trains of 90 bunches each.
Within each train the bunches populate adjacent buckets
and between trains there is a gap that extends over 43 buck-
ets. A consequence of an uneven filling scheme is that
within each train the synchronous phase will vary from
bunch to bunch. In the NLC after extraction the beam en-
ters the bunch compressor and then the X-band linac. The
phase variation in the ring, if uncompensated, will lead to
a phase variation in the X-band linac which, in turn, will
result in an unacceptable spread in the final energy of the
individual bunches of a train. The synchronous phase vari-
ation, however, can be compensated, either in the damping
ring itself or in the bunch compressor that follows. The
subject of this paper is compensation in the damping ring.
(Compensation in the compressor is discussed in Ref. [1].)

In this report we begin by finding the synchronous phase
variation in damping rings with bunch trains and gaps of
arbitrary length. These results are then applied to the pa-
rameters of the NLC damping rings. Finally, we study two
methods of compensating this phase variation: in the first
method two passive subharmonic cavities are employed,
and in the second the klystron output is varied as a func-
tion of time. We find that, for the NLC, a nominal phase
variation of6� within a train can be reduced by almost an
order of magnitude by either method of compensation, with
the cost of the second method being an extra 10% in output
power capability of the klystron. More details of this work
will be found in Ref. [2]. Concerning beam loading in stor-
age rings, the reader is referred to Ref. [3]; for rings with
bunch trains and gaps, see also Ref. [4].

2 VARIATION IN BUNCH PHASE
Consider a storage ring filled withNt equal trains ofN
bunches each. Let us suppose that all initial transients have
died out and that the longitudinal bunch positions have set-
tled down to their asymptotic values. We know from the
symmetry of the problem that the position of a given bunch
within a train must be the same for all trains, and we can
therefore limit our consideration to one train and the gap
following it. Let us, in this section, ignore the beam load-
ing effects of modes other than the fundamental. Then the
cavity voltage can be represented by a phasor rotating at
the fundamental frequency. The total cavity voltage asso-
ciated with bunchn, ~V nc (we use a tilde to denote phasor
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quantities), is given by the sum

~V nc = ~V nb + ~V ng ; (1)

with ~V nb the beam induced voltage and~V ng the generator
voltage associated with bunchn. Our phasor clock steps
in increments of time�t = T0=nh = 2�=!rf , with T0
the revolution time,nh the harmonic number, and!rf the
nominal rf frequency. The generator voltage is normally
independent ofn and set to

~Vg = Vc0 exp(i�0)� ~Vb0; (2)

with Vc0 the nominal peak cavity voltage and�0 the nom-
inal synchronous phase, defined by�0 = cos�1[(U0 +
Uhml)=eVc0], whereU0 is the per turn synchrotron radi-
ation energy loss andUhml is the higher mode losses. The
phasor~Vb0 is the beam induced voltage assuming the cur-
rent is evenly distributed around the ring[3]:

~Vb0 = �
2I0R

1 + �
cos ei ; (3)

whereI0 is the average beam current,R is the cavity shunt
impedance,� the coupling parameter, and the tuning an-
gle. The tuning angle is defined by = tan�1(�!TF ),
where�! = !0 � !rf is the cavity detuning,!0 is the
cavity resonant frequency; whereTF = 2QL=!rf is the
cavity filling time andQL the loadedQ of the cavity.

The voltage increase that bunchn receives from the cav-
ities is given by

Re[ ~V nc exp(i��n)] = (U0 + Uhml)=e = Vc0 cos�0 ;

(4)
with ��n=!rf the deviation in arrival time at the cavities
of bunchn. Combining Eqs. (1), (2), and (4) we obtain

cos�0�cos(�0+��n) = Re[( ~V nb �
~Vb0) exp(i��n)]=Vc0:

(5)
The bunches shift in phase to compensate for differences in
the real part of the beam induced voltage when they arrive
at the cavities. If the phase shifts are small, as they are
for the NLC damping rings, the phase difference between
bunchn and bunchn0 of a train becomes

��nn0 �
Re( ~V n

0

b � ~V nb )

Vc0 sin�0
: (6)

The beam induced voltage at a clock time corresponding
to the passage of bunchn+ 1 of a train is given by

~V n+1
b = �2kq exp(�i��n+1) + ~V nb exp(i��!Tb) (7)



with k the loss factor(= 1
2
!rfR=Q), q the charge per

bunch, andTb the nominal time between bunches. The pa-
rameter��! is a complex quantity:

��! = �! + i
!rf

2QL
=

tan + i

TF
: (8)

The second term in Eq. (7) gives the development of the
beam loading phasor in the time interval between then

th

and the(n+1)st bunch, and the first term gives the contri-
bution of the(n + 1)st bunch just after its passage. From
symmetry we know that the properties of bunchN + 1 are
the same as those for bunch1; therefore we cross the gap
and close the loop by setting

~V 1
b = �2kq exp(�i��1) + ~V Nb exp(i��!Tg) ; (9)

with Tg the gap time interval.
Now let us assume, as is normally the case, that for alln

the deviation in bunch position is small,��n � 1. Then
we can explicitly solve Eqs. (7) and (9) to give

~V nb = �
2kq

1� ei
��b

�
1�

sin 1
2
Ng

��b

sin 1
2
(N +Ng)��b

e
i(n�N=2)��b

�

(10)
with ��b = ��!Tb the nominal (complex) phase change be-
tween bunches andNg = Tg=Tb � 1 the number of “miss-
ing” bunches in the gap. The difference in induced voltage
across a bunch train is given by

~V Nb � ~V 1
b = �2kq

sin 1
2
Ng

��b

sin 1
2
��b

sin 1
2
(N � 1)��b

sin 1
2
(N +Ng)��b

: (11)

Note that forN large this equation is symmetric with re-
spect toN andNg. Finally note that even in the case��n
is not very small compared to 1 we can use Eq. (10) to ob-
tain an initial solution, and then iterate Eqs. (5),(7), (9) to
obtain the exact solution.

3 SHORT TRAINS AND SHORT GAPS
Let us denote a bunch train as being short ifj��!NTbj � 1;
a gap as being short ifj��!NgTbj � 1. According to these
criteria, in the NLC damping rings both the train length and
the gap length are short. In such a case Eq. (10) becomes

~V nb �
2kq

i��b

�
N

N +Ng

��
1� iNg

��b

�
n

N
�

1

2

��
: (12)

Note that the leading order term is just equal to~Vb0. From
Eq. (12) we obtain

~V nb �
~V n

0

b � �2kq

�
(n� n

0)Ng

N +Ng

�
: (13)

We see that the variation in~Vb is to good approximation a
real quantity, and that it varies linearly with bunch number,
implying that the phase also varies linearly along the train
[see Eq. (6)]. The total phase shift from the first to the last
bunch of each train is given by

��1N � �
2kq

Vc0 sin�0

�
(N � 1)Ng

N +Ng

�
: (14)

We note that our result is independent of or �, and that,
if N is not small, it is symmetric with respect to the length
of the bunch train and the length of the gap. Note also that,
if N is not small, Eq. (14) can be written in the form[5]

��1N � �
2kI0Tg

Vc0 sin�0
: (15)

This result is also valid when either, but not both, the bunch
train length or the gap length is long.

4 THE NLC DAMPING RINGS
For the NLC damping rings the rf frequency is 714 MHz
and theR=Q for the two rf cavities combined is 240
;
therefore,k = 0:54 V/pC. We takeN = 90, Ng = 43,
q = 2:5 nC, andTb = 1:4 ns; therefore,I0 = 1:2 A.
Also takingVc0 = 1 MV and �0 = 50� we obtain from
Eq. (14)��1N = �5:8�. We have also numerically sim-
ulated this problem using turn-by-turn tracking[6], where
we have continued until the steady state was reached. For
the tracking the unloadedQ of the cavities was taken to be
Q0 = 25; 500; for minimum reflected powerQL = 2200
and = �44:5�. The phasor diagram of the resulting volt-
ages is shown in Fig. 1; the shift in synchronous phasevs
bunch number is shown in Fig. 2a. We see that, over each
train, the variation is linear with bunch number, and that the
total phase shift is�5:9�, in good agreement with our ana-
lytical results. Note that both the length of the gap and the
length of the bunch train are short according to our criteria:
j��!Tgj = 0:1� 1 andj��!NTbj = 0:2� 1.

Figure 1: A diagram of the phasors~Vb, ~Vg, and~Vc, in units
of MV, for the central particle in a train in the NLC damp-
ing rings. The variation from bunch 1 to 90 in a train is also
indicated by the short arcs.

5 PHASE COMPENSATION
In Ref. [7] the authors find that a properly tuned, passive,
lower harmonic cavity can be used to compensate the phase
variation due to bunch trains. The frequency of this cavity
must equal!rf � 2�mNt=T0, withm an integer. Adding
this cavity to our analysis we find, for a ring with short
trains and short gaps, that this works by compensating the
linear variation of Re( ~V nb ) along the train with a function
varying assin[2�m(n�N=2)=(N+Ng)]. In the case of the
SLC the gap length is only about half the train length, so
the compensation does not work well. We will, therefore,
also study the effect of using two lower harmonic cavities.

Fig. 2b gives the tracking results when an optimally
tuned, passive cavity with frequency!rf � 8�=T0 is in-
cluded in the damping ring. The parameters are:R=Q =
34 
,Q0 = 3:43� 104,QL = 1:14� 104, and = �85�.



Figure 2: (a) The steady-state, bunch-to-bunch phase devi-
ationvs bunch number for the NLC damping rings. Note
that a negative value of phase is more toward toward the
rf crest, and that zero represents the nominal bunch posi-
tions. Also shown are what can be achieved when (b) one
or (c) two passive, lower harmonic cavities are added.

We see from the figure that the maximum phase deviation
has been reduced to2:1�, about a factor of 3 reduction in
phase deviation. Adding a second, passive cavity, with fre-
quency!rf � 16�=T0, R=Q = 18 
, Q0 = 34; 300,
QL = 10; 000 and = �82� gives the result shown in
Fig. 2c. Now the maximum phase deviation has been re-
duced to0:65�, which is a reduction factor of 9. Finally,
note that theR=Q's of the compensation cavities are very
small, so they should not contribute to an instability.

Another method of compensation is to optimally vary
the klystron output in both amplitude and phase as a func-
tion of time. This method requires extra power from the
klystron. The amount required and the effectiveness of the
compensation depend on the bandwidth or response time of
the klystron output. To compensate perfectly~V ng must be
varied to match the negative of the variation in~V nb . For the
case of the NLC damping rings we obtain from Eq. (13)
that this requires a total change—mostly in the real part
of ~V ng —of +78 kV or, equivalently, a relative change of
+6% (see Fig. 1). A plot of the desired variation is given
in Fig. 3 (the solid lines). Let us assume that the am-
plitude and phase of~Vg can be varied independently, and
that when the rf amplitude or phase at the klystron input is
switched, the output (change in~Vg) responds according to
[1 � exp(�t=td)], with td the voltage response time. We
optimally switch at the beginning and end of each train to
give initial amplitude and phase values of~Vg of, respec-
tively, 1.26 MV and 6.20�, and final values of 1.34 MV
and 5.85�. Let us assume thattd is 100 ns (a voltage re-
sponse time that one can reasonably expect for a klystron
at our frequency[8]). The resulting variation in amplitude,

for example, is then given by

j ~V ng j=MV =

�
1:26 + 0:109[1� exp(�0:014(n� 1))]

1:34� 0:180[1� exp(�0:014(n� 1))]
(16)

where the upper (lower) line gives the voltage during the
bunch train (gap) andn is the bucket number from the be-
ginning of the current bunch or gap. The corresponding
variation in Re( ~V ng ) is given by the dashed curve in Fig. 3.
The difference between the solid and dashed curves equals
the variation in Re( ~V nb ) from which, as before, we obtain
the phase variation along a train. The results are shown in
Fig. 4. The total phase variation is reduced to 0.74�. There
is a small power cost compared to the nominal case ofj ~V ng j
is kept constant at 1.3MV. We see from Eq. (16) that an
amplitude overhead of 5.3%, or equivalently, a power over-
head of 10.6% is needed.

Figure 3: The variation of Re( ~Vg) that eliminates the varia-
tion in bunch phase (the solid lines). The optimal variation
that can be achieved, assuming a klystron voltage response
time constant of 100 ns, is shown by the dashed line.

Figure 4: The phase variation that is achieved when~Vg is
varied optimally assuming a klystron voltage response time
constant of 100 ns.
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