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Abstract 
The number and locations of dipolar correctors for the

SOLEIL storage ring are discussed. The aim is then to
calculate the corrector strengths and the residual closed
orbit deviations due to standard magnetic errors. This is
done in two different ways : from analytical formulas
using the eigenvalues, eigenvectors and from correction
of a sample of closed orbits using the singular value
decomposition method.

1. INTRODUCTION
The SOLEIL project [1], is designed with a very small

beam emittance to produce very high brilliance beams of
synchrotron radiation in the VUV and soft X-ray regions.
This requires relatively strong focusing, and magnet
errors will therefore introduce large distortions in closed
orbit (C.O.) which reduce the dynamic aperture. To keep
the optimum SOLEIL performances it is therefore
necessary to install a system of Beam Position Monitors
(BPM) and dipolar correctors.

We have studied the C.O. correction system from a
statistical point of view with two different methods : the
first one, particularly interesting during the elaboration of
a project uses analytical formulas involving eigenvalues
and the second one the Singular Value Decomposition
(SVD) technique to correct a sample of C.O. randomly
chosen.

The number and the locations of the BPMs and
correctors will be discussed. A minimum C.O. correction
system (minimum number of correctors), is defined, from
which any other solution with more correctors can be
derived in order to decrease individual corrector
strengths.

Finally, for some selected configurations, we will give
the rms and maximum of corrector strengths and residual
C.O. deviations after the correction of C.O. due to
standard magnetic errors. That characterizes the
effectiveness of the correction scheme.

2. CLOSED ORBIT CORRECTION
METHODS  USED

Two complementary correction methods are used. The
first one starts with a least square minimization of the
C.O. at the BPMs and makes use of eigenvalues [2]. This
has been successfully applied to the Super-ACO storage
ring [3]. To study a corrector scheme of a ring in project,
a statistical analysis is necessary [4], then analytical
formulas can be derived, given rms values of corrector
strengths, residual C.O., as a function of initial C.O. and
also of BPM and corrector errors [5]. As well known
_________________
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formulas already give the rms C.O. deviations as a
function of magnetic errors, the problem of C.O.
correction can thus be completely treated analytically,
from the C.O. errors generation to the correction.

The second method also deals with a least square
minimization of C.O., but following the SVD theory [6],
decomposes the corrector to BPM response matrix into a
product of two unitary matrices and a diagonal matrix.
The eigenvalues so obtained are the square root of the
ones obtained by the first method, and the two techniques
are very similar. To check the results of the first method,
we decided to apply the SVD algorithm to correct a
sample of 20 C.O. randomly generated by magnetic
errors.

3. NUMBER AND LOCATION OF BPMs
AND CORRECTORS

The SOLEIL lattice is composed of 4 superperiods,
each one consisting of 4 cells. For the sake of simplicity,
the betatron functions and phase advances are
respectively shown in fig. 1 and fig. 2, for one cell only
and in the case of the 2.7 nm.rad lattice.

The BPMs must be placed at crucial points : as close
as possible to the quadrupoles or the sextupoles, where
misalignments are sources of orbit distortion or dynamic
aperture reduction, and at the ends of each insertion
straight section in order to provide local C.O. adjustment.
Several solutions are possible [7], but the set of 7 BPMs
per cell, as shown in fig. 2, has been adopted, in order to
minimize their total number (7 x 16 = 112).

The most efficient correction is obtained when the
correctors are located as near as possible to the sources
generating the largest orbit deviation, i.e., the
quadrupoles. Nevertheless, we discarded the possibility of
incorporating the correctors inside the quadrupoles for
several reasons [7] such as chromaticity change, good
quality and reproducibility of quadrupole field. Taking
into account the density of the magnetic elements of the
lattice, the correctors will be included in the sextupoles.
There are thus 7 possible correctors per cell and their
positions, noted C1 to C7, are shown in fig. 2.

But is it necessary to use all these correctors ? To
answer, let us look at the optical properties of the lattice.

In the horizontal plane, the phase advance presents
roughly 3 parts of nearly constant phase, that means that
the correctors are not truly independent but they only
form 3 really independent groups (C1, C2) ; (C3, C4,
C5) ; (C6, C7). The minimum number of correctors is
thus 3 x 16 = 48 chosen among these 3 groups at the same
time. The βx function tells us that C1, C4, C7 will be the
most effective.

In the vertical plane, the phase advance is much
smoother and only correctors located at the two different



ends of the cell will be really independent. The minimum
number of correctors is thus 2 x 16 = 32 and the βz

function imposes the choice of C2 and C6.
A careful study of a function measuring the efficiency

of the correctors by using the SVD properties suggests the
same correctors [7].

Starting from this minimum configuration, any
addition of other correctors will be helpful on condition
that the right number of eigenvalues is used, that is [8] :

• In the worst case, the new correctors are not
independent of the old ones, so the initial number of
eigenvalues should be used, and the strength of correctors
neighbouring to the new ones introduced will be lower.
The residual orbit is only slightly reduced.

• In the best case, new independent parameters are
introduced so that one can use more eigenvalues,
corrector strengths and residual C.O. at the BPMs are
lower.

4. RESULTS
The C.O. distortions are produced by the following

errors, expressed with rms values : quadrupole
misalignment <x> = <z> = 1.10-4 m, dipole misalignment
<s> = <z> = 5.10-4 m, dipole axial roll <θs> = 2.10-4 rad
and dipole field error <Bl>/(Bl)o = 5.10-4.

To summarize, we will only report here the results
concerning the low emittance (2.7 nm.rad) lattice and that
only for the minimum configuration and the one when all
the correctors are used.

With this last configuration, one should pay attention
to the degenerescence or near degenerescence
problem [8]. Fig. 3 and 4 show the eigenvalues numbered
following their decreasing values, respectively for the
horizontal and the vertical plane when all BPMs and
correctors are used. One can see that horizontally, there is
a large discontinuity at 3 x 16 = 48 which is coherent with
the number of effectively independent parameters
mentioned above. Nevertheless, one can use up to
4 x 16 = 64 or even 5 x 16 = 80 eigenvalues knowing that
the use of more eigenvalues gives more accurate
correction but will require stronger corrector strengths.
Beyond 80 eigenvalues, the increase in corrector strength
is no longer worthwile because even if the residual C.O.

is reduced at the BPMs, it will be deteriorate elsewhere.
In vertical, the largest discontinuity can be observed at
n = 32, corresponding well to the minimum configuration
and the largest number of eigenvalues one can use is
4 x 16 = 64.

Table 1 summarizes the results of the closed orbit
correction calculation using the two methods. The
corrector strengths and residual C.O. obtained by the
analytic formulas are given in rms values. By the second
method of correction on a sample of 20 different C.O.
generated by the same magnetic rms errors truncated to 3
standard deviations, one can also calculate the same
quantities. We present on the right hand side of Table 1,
only the maximum values of corrector strengths and
residual C.O. which correspond to approximatively 3
times the previous rms values.

Fig. 5 and 6 show respectively in the horizontal and
vertical plane the rms residual C.O. along the machine,
obtained by the first method, for the correction scheme
where all the correctors and the 64 highest eigenvalues
are used. Fig. 7 and 8 show the residual C.O. after the
correction of one of the 20 different orbits using the
second method with the same correction scheme.

When taking into account BPM alignment errors of
<x> = <z> = 1.10-4 m, only 48 eigenvalues will be usable
and max <res. C.O. > = 0.10 mm for the same corrector
strengths. Indeed, following formulas (29) and (31) of [5],
if more eigenvalues are used, the residual C.O. without
errors is further reduced, but the one with errors (due to
BPM or even computer errors) will increase.

Corrector strength errors of 1/100, that is 10-6 rad, do
not change these results.

5. CONCLUSION
A minimum configuration making use of 48

correctors horizontally and 32 vertically with a strength
of 0.5 mrad allows one to obtain satisfactory results. If we
install a corrector in each sextupole, the corrector
strengths can be lower by a factor of 2 on condition that
the right number of eigenvalues is used. This
configuration would be necessary to control the position
and angle at each insertion straight section.

Table 1.
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