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Abstract

The paper expounds a technique to find a sufficient condi-
tion of (longitudinal, transverse) stability of a beam with
unequal bunches, partial orbit filling or bunch trains in-
cluded. It proceeds from a computer solution of eigenvalue
problems of moderate dimensions for an observable within-
bunch motion (multipole and head-tail modes, their higher-
order radial modes) at a given normal coupled-bunch mode
of a conventional basic beam — a closed train of identical
and equispaced bunches. Then, its complex eigenvalues
and non-diagonal Gram matrices of eigenvectors are used
to find boundary of a convex field of complex Rayleigh-
Ritz ratios which yields an ‘upper’ estimate of eigenvalue
locus and, thus, stability safety margin for any arbitrary
beam which is a subset of the basic one. As an example of
application, the technique is applied to transverse resistive-
wall head-tail instability of bunches in theUNK.

1 INTRODUCTION

Consider two beam configurations. The first,the basic
beam, is a conventional closed pattern ofM identical eq-
uispaced bunches filling the orbit entirely. The second,a
subset beam, is an arbitrary beam which is derived from
the former one by imposing unequal population to bunches
and(or) arranging bunch trains and beam gaps. There is a
long-standing issue on how to relate asymptotic (att→∞)
stability safety margins of basic and subset beams.

An algebraic approach to this problem (a subset beam
with empty bunches) is pioneered by [1] where instability
growth rates and coherent tune shifts are found as com-
plex eigenvalues of a bunch-to-bunch interaction matrix.
Ref.[2] treats a wider subset beam with unequally popu-
lated bunches (an empty bunch= a bunch of zero popula-
tion). It also shrinks a rectangular estimate for subset-beam
eigenvalue locus of [1] to that of a convex hull1 around the
basic-beam eigenvalues. Still, the qualitative outcome of
[1, 2] is that “stability of the basic beam always ensures
that of a subset one”.

Unfortunately, the present paper would show that this
optimistic statement holds true only in frames of a simpli-
fied dynamical model in which bunch-to-bunch interaction
is treatable via a ‘planar’M ×M matrix. Accounting for
impedance bandwidth extension and, say, transverse chro-
maticity requires a ‘non-planar’ bunch-to-bunch interaction

1A convex hull Co(ai) of array ai is a set of linear combinations∑
i
ciai with ci = c∗i , ci ≥ 0, and

∑
i
ci = 1.

array of higher dimensionM ×M ×N withN 6= 1. This
tends to expel subset-beam eigenvalue locus beyond that
of the basic beam. It is a clear symptom of deterioration,
though potentially so, of the situation with coherent stabil-
ity of a subset w.r.t. the basic beams.

2 MAJOR SET OF EQUATIONS

Let ϑ = Θ− ω0t be azimuth in a co-rotating frame, where
Θ is azimuth around the ring in the laboratory frame,ω0 is
angular velocity of a reference particle,t is time. Let us nu-
merate bunches of the basic beam withj = 0, 1, . . .,M−1,
and denote asϑj = −2πj/M coordinates of their centers

in co-frame. LetJ (j)
0b , J0b be bunch currents (averaged over

orbit) of a subset and the basic beams, respectively. In-
troduce bunch weightsνj = J

(j)
0b /J0b ≤ 1 with νj = 0

standing for an empty bunch in thej-th orbital position.
Let x(j)(ϑ, t) = x(j)(ϑ+2π, t) be a variable to describe

coherent motion of thej-th bunch (a perturbed longitudi-
nal current, a transverse dipole moment). It can be decom-
posed into plane waves

x(j)(ϑ, t) =
1

2π

∑
k

∫
dΩx

(j)
k (Ω) eik(ϑ− ϑj)− iΩt

(1)
with Ω being a frequency of Fourier Transform int w.r.t.
co-frame. In lab-frame,Ω is seen as a side-bandω =
kω0 + Ω. Harmonicsx(j)

k (Ω) are calculated in the coor-
dinate systemϑ − ϑj attached to thej-th bunch center. A
set ofxk can be arranged into aN × 1 column-vector

~x = (. . . , xk−1, xk, xk+1, . . .)
T ∈ CN

from a linear complex vector spaceCN . In practice,N
is treated as its finite truncated dimension. Still, one can
allowN →∞ if all the relevant limits do exist.

Stability problem of a subset beam can be stated as an
eigenvalue problem for a linear operator acting in the ex-
tended spaceCN·M = ⊕

∑
j C

(j)
N whereC

(j)
N 3 ~x

(j),

λx
(j)
k =

1

M

∑
k′,j′

νjPkk′(Ω) eik
′(ϑj − ϑj′)x(j′)

k′ . (2)

Matrix Pkk′(Ω) operates inCN . Its form varies slightly
between longitudinal(L) and transverse(T ) cases,

Pkk′(Ω) =

{
Y

(L)
kk′ (Ω)Z

(L)
k′ (k′ω0 + Ω)/k′;

Y
(T )
kk′ (Ω)Z

(T )
k′ (k′ω0 + Ω).

(3)



Coupling impedancesZ(L)
k (ω)/k and Z

(T )
k (ω) exhibit

similar reflection properties w.r.t.ω, k = 0. Bunch transfer
functionsY (L,T )

kk′ ∝ J0b can be found elsewhere and in-
clude effects of Landau damping, decomposition into mul-
tipole(L) or head-tail dipole(T ) modes, etc.

Functions of integer variablej are conveniently decom-
posed with Discrete Fourier Transform (DFT):

~x(n) = M−1
∑

j
~x(j) exp (2πinj/M) , (4)

~x(j) =
∑

n
~x(n) exp (−2πinj/M) (5)

wheren = 0, 1, . . . ,M − 1 is a wave number of DFT.
To simplify notations, let În be a projection op-

erator from CN to CN/M . Its matrix elements are
δkk′

∑
l δk,n+Ml with δij the Kronecker delta-symbol,∑

n În = diag(. . . , 1, 1, . . .), the matrix unit.
Transformation of Eq.2 to DFT-images yields

λ~x(n) =
∑

n′
∆nn′ P̂ (Ω)În′ ~x

(n′) (6)

where∆nn′ denotes an interference factor

∆nn′ = M−1
∑

j
νj exp (2πi(n− n′)j/M) . (7)

Eq.6 shows that instability in a subset beam withνj 6=
const mixes all DFT-harmonics of perturbation. Charac-
teristic equation of instability and sufficient condition of
beam stability are, respectively,

λp(Ω) = 1, maxp,Ω1 |λp(Ω = Ω1 + i0)| ≤ 1. (8)

Herep is a generalized index of the beam oscillation eigen-
mode, its eigenfrequencyΩp being a root of the first of
Eqs.8. Instability occurs whenImΩp > 0.

3 BASIC BEAM

Let us label its eigenvalues and eigenvectors with a sub-
script “•”. Now thatνj = 1 and∆nn′ = δnn′ , Eq.6 splits
intoM independent problems

λ• ~x
(n)
• = P̂ (Ω)În ~x

(n)
• , n = 0, 1, . . . ,M − 1. (9)

The perfect beam periodicity decouples allM DFT-
harmonics. Each of them describes a possible coupled-
bunch (CB) mode. Thus, the first sub-index of the basic-
beam eigenmode index̀= (n,m) is naturally found, the
latterm being an index of inside-bunch mode whose com-
ponents are identified in solving specific problems. Spacial
structure of modè = (n,m) is merely

~x
(n′)
•` = ~x

(n)
•` δnn′, ~x

(j)
•` = ~x

(n)
•` exp (−2πinj/M) (10)

which is an usual CB oscillation with a phase shift of
2πn/M between adjacent bunches. These modes are mu-
tually orthogonal being treated as hyper-vectors from ex-
tended spaceCN·M with a scalar product

〈ă, b̆〉 = M−1
∑

k,j
wk a

(j)
k b

(j)∗
k ; ă, b̆ ∈ CN·M (11)

wherewk is a real positive weight. Vector~x ∈ CN is a
projection ofx̆ ∈ CN·M .

Eq.9 has only eachM -th its eigenvalueλ•` 6≡ 0. These
can be obtained on projecting Eq.9 into a subspace~x ′ =
În~x ∈ CN/M of a smaller dimension,

λ• ~x
′(n)
• = ÎnP̂ (Ω) ~x

′(n)
• . (12)

Eq.12 is amenable to a straightforward search forλ•` 6≡ 0

and~x ′(n)
•` with computer codes available. Then, Eq.9 can

be used to recover full-component vectors~x(n)
•` ∈ CN

which describe observable motion of individual bunches.
All these formally belong to a range of operatorP̂ În.

On the contrary, vectors from a null space ofP̂ În with
λ•` ≡ 0 describe a hidden, unobservable motion. Eq.9
shows that the null space of̂P În is a set of~x: În~x = ~0.
Hence, eigenvectors of the hidden motion may be com-
posed as, say, a natural orthogonal set ofN × 1 column-
vectors~x(n)

•` = (. . . , 0, 1, 0, . . .)
T with a single non-trivial

component ‘1’ put consequently into every line save for the
(n +Ml)-th ones,l is an integer.

Thus, in practice, a complete set of eigenvaluesλ•` and
eigenvectors~x(n)

•` of Eq.9 can be found. For a givenn, the

span over~x(n)
•` originates the entire spaceCN . Hence,~x(n)

•`
can be used as a coordinate basis inCN . Its (Hermitian
positive defined) Gram matrix is

G
(n)
mm′ =

(
~x

(n)
•(n,m), ~x

(n)
•(n,m′)

)
(13)

where(. . .) is a scalar product consistent with Eq.11,(
~a,~b
)

=
∑

k
wk akb

∗
k; ~a,~b ∈ CN . (14)

OperatorP̂ În is not a normal one, hence basis of~x
(n)
•` is

non-orthogonal, andG(n)
mm′ is a non-diagonal matrix.

Eq.12 is commonly treated at length in an instability the-
ory. Naturally, the desire arises to use its supposedly known
spectrumλ•` (andG(n)

mm′ ) to localize spectrumλp of a sub-
set beam and study its stability with the second of Eqs.8.

4 SUBSET BEAM

Multiply both sides of Eq.2 byM−1wkx
(j)∗
k /νj and sum

over k, j. Rewrite the result so as to arrange formally

a Rayleigh-Ritz ratioR for a linear operatorQ(jj′)
kk′ =

M−1Pkk′ exp (ik′(ϑj − ϑj′)) in CN·M ,

λp = ξR, ξ =

∑
k,j wk|x

(j)
k |

2∑
k,j wk|x

(j)
k |

2/νj
, R =

〈Q̂x̆, x̆〉

〈x̆, x̆〉
. (15)

Eq.2 shows that|x(j)
k | ∝ νj. Hence|x(j)

k |
2/νj ∝ νj and

tending to a limitνj → 0 (empty bunch) inξ inflicts no
problems. Asνj ≥ 0 by definition, it is easy to see that
ξ ∈ Co(νj). For realνj it entails

minj νj ≤ ξ ≤ maxj νj = 1. (16)



Now useϑj = −2πj/M in Q̂ and DFT from Eq.5 to get

〈Q̂x̆, x̆〉 =
∑

n

(
P̂ În ~x

(n), ~x(n)
)
, (17)

〈x̆, x̆〉 =
∑

n

(
~x(n), ~x(n)

)
> 0. (18)

The last Eq. is but the Parseval sum due to orthogonality of
CB modes inCN·M .

For eachn, eigenvectors~x(n)
•` of P̂ În — modes of the

basic beam — construct a complete countable skew basis in
CN . It can be used for coordinate representation of modes
~x

(n)
p of a subset beam,

~x(n)
p =

∑
m
c` ~x

(n)
•` . (19)

Inserting this decomposition into Eqs.17,18 yields

〈Q̂x̆, x̆〉 =
∑

n,m,m′
λ•` c`G

(n)
mm′ c

∗
`′ , (20)

〈x̆, x̆〉 =
∑

n,m,m′
c`G

(n)
mm′ c

∗
`′ > 0 (21)

where`′ = (n,m′). One does not know coordinatesc`
a priori. (Otherwise, spectral estimates in question would
have not been required.) Let us allowc` be arbitrary com-
plex numbers, and study the so called numerical field ofQ̂
— a setR of possible values of Rayleigh-Ritz ratiosR:

R =
∑

n,m
a` λ•`,

∑
n,m

a` = 1, (22)

a` =
c`
∑
m′ G

(n)
mm′ c

∗
`′∑

n,m c`
∑
m′ G

(n)
mm′ c

∗
`′

. (23)

Then, majorizing the leftmost of Eqs.15, one gets the
‘upper’ estimate of a subset-beam spectrum locus,

λp ∈ R ⊂ C1. (24)

Linear algebra tells thatR, being a numerical field of a lin-
ear operator inCN·M , is: (i) a bounded closed set inC1,
(ii) ∀λ•` ∈ R, and (iii)R is a convex set that contains
inside every straight-line segment which connects its ele-
ments pairwise.

Should matrixG(n)
mm′ be diagonal, one would have got

a` = a∗` , 0 ≤ a` ≤ 1 and, hence,R = Co
(
λ•(n,m)

)
which would have reproduced the result quoted in Sect.1.
However, generallyG(n)

mm′ 6= δmm′ . Only on adopting a
single-modemodel when a bunch is deprived of all but
them1-th degree of freedom, i.e.λ•` = λ•`δmm1 and
c` = c`δmm1 , one virtually gets a diagonal1 × 1 matrix
G

(n)
mm′ . This kind of assumption is tacitly implied in [1, 2].

It is well adequate when beam interacts with a band-pass
high-Q HOM impedance ((L) or (T ), chromaticity off),
or with a low-pass narrow-band resistive-wall impedance
((T ), chromaticity on and off).

In a multi-modemodel, put Eq.19 into Eq.6 to reveal
structure of subset-beam observable (λp 6≡ 0) motion,

~x(n)
p =

∑
{`′=(n′,m′):λ•`′ 6≡0}

∆nn′ c`′ (λ•`′/λp) ~x
(n′)
•`′ . (25)

The span thus obtained over observable~x
(n′)
•`′ does not nec-

essarily originate the entireCN . Calculations show that for
a given inside-bunch modem eigenvector~x(n)

•(n,m)
is nearly

independent of CB moden. Mostly, it carries data on spa-
cial localization of perturbation inside bunch. Comparison

of Eqs.19,25 with~x(n)
•(n,m) ≈ ~x

(n′)
•(n′,m) in mind shows that

a reasonable trial guess of subset-beam motion is arrived at
with a truncated series

~x(n)
p '

∑
{m:λ•` 6≡0}

c` ~x
(n)
•` (26)

where residuum∆~x(n) from a null space ofP̂ În with
În∆~x(n) = ~0 is disregarded due to a negligible value ex-
pected. In practice, use of Eq.26 entails that summation
in Eqs.22,23 should go overn = 0, 1, . . . ,M − 1 and the
observable subset{m,m′ : λ•(n,m), λ•(n,m′) 6≡ 0} only.

The last step is to search with computer for boundary of
R by, say, a Monte-Carlo scan over coordinatesc`. By the
way, due to convexity ofR, any partial image of a subset
in CN·M can be lawfully diluted to the nearest convex set.

The figure shows this approach applied to study
resistive-wall instability in the UNK (betatron tune is
QT = 55.7). Eigenvalues are interpreted as instabilitydriv-
ing impedancesζ to be plotted in(Z)-plane of a thresh-
old map. Eigenmode index is̀ = (n,mϑ, r) where
head-tail mode ismϑ = 0 throughout. The impedance
is sampled with Eq.12 at frequency lines separated by
Mω0 in |ω| <∼ 3.5Mω0. Thus, at most 7 radial modes
r = 0, 1, . . . , 6 are involved. Markers plot eigenvalues for
(n = −76,−75, . . .,−36; r = 0). Dashed broken line is a
convex hull over(n = −M/2, . . . ,M/2; r = 0) which
stands for asingle-modemodel. Ellipses encircling the
origin are partial boundaries to image a span over radial
modesr = 0, 1, 2 at a CB moden = −58,−57, . . . ,−54
nearest ton + QT ' 0. CurveA images a span over
(n = −56,−55; r = 0, 1), curveB — that over(n =
−57,−56; r = 0, 1). Thus, one can assess quantitatively
stability of a subset w.r.t. the basic beams.
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