BEAM WITH UNEQUAL BUNCHES VERSUS A WIDE-BAND IMPEDANCE IN A SYNCHROTRON: STABILITY CRITERION

S. Ivanov and M. Pozdeev, IHEP, Protvino, Moscow Region, 142284, Russia

Abstract

The paper expounds a technique to find a sufficient condition of (longitudinal, transverse) stability of a beam with unequal bunches, partial orbit filling or bunch trains included. It proceeds from a computer solution of eigenvalue problems of moderate dimensions for an observable withinbunch motion (multipole and head-tail modes, their higherorder radial modes) at a given normal coupled-bunch mode of a conventional basic beam - a closed train of identical and equispaced bunches. Then, its complex eigenvalues and non-diagonal Gram matrices of eigenvectors are used to find boundary of a convex field of complex RayleighRitz ratios which yields an 'upper' estimate of eigenvalue locus and, thus, stability safety margin for any arbitrary beam which is a subset of the basic one. As an example of application, the technique is applied to transverse resistivewall head-tail instability of bunches in the UNK.

1 INTRODUCTION

Consider two beam configurations. The first, the basic beam, is a conventional closed pattern of M identical equispaced bunches filling the orbit entirely. The second, a subset beam, is an arbitrary beam which is derived from the former one by imposing unequal population to bunches and(or) arranging bunch trains and beam gaps. There is a long-standing issue on how to relate asymptotic (at $t \rightarrow \infty$) stability safety margins of basic and subset beams.

An algebraic approach to this problem (a subset beam with empty bunches) is pioneered by [1] where instability growth rates and coherent tune shifts are found as complex eigenvalues of a bunch-to-bunch interaction matrix. Ref.[2] treats a wider subset beam with unequally populated bunches (an empty bunch $=$ a bunch of zero population). It also shrinks a rectangular estimate for subset-beam eigenvalue locus of [1] to that of a convex hull ${ }^{1}$ around the basic-beam eigenvalues. Still, the qualitative outcome of $[1,2]$ is that "stability of the basic beam always ensures that of a subset one".

Unfortunately, the present paper would show that this optimistic statement holds true only in frames of a simplified dynamical model in which bunch-to-bunch interaction is treatable via a 'planar' $M \times M$ matrix. Accounting for impedance bandwidth extension and, say, transverse chromaticity requires a 'non-planar' bunch-to-bunch interaction

[^0]array of higher dimension $M \times M \times N$ with $N \neq 1$. This tends to expel subset-beam eigenvalue locus beyond that of the basic beam. It is a clear symptom of deterioration, though potentially so, of the situation with coherent stability of a subset w.r.t. the basic beams.

2 MAJOR SET OF EQUATIONS

Let $\vartheta=\Theta-\omega_{0} t$ be azimuth in a co-rotating frame, where Θ is azimuth around the ring in the laboratory frame, ω_{0} is angular velocity of a reference particle, t is time. Let us numerate bunches of the basic beam with $j=0,1, \ldots, M-1$, and denote as $\vartheta_{j}=-2 \pi j / M$ coordinates of their centers in co-frame. Let $J_{0 b}^{(j)}, J_{0 b}$ be bunch currents (averaged over orbit) of a subset and the basic beams, respectively. Introduce bunch weights $\nu_{j}=J_{0 b}^{(j)} / J_{0 b} \leq 1$ with $\nu_{j}=0$ standing for an empty bunch in the j-th orbital position.

Let $x^{(j)}(\vartheta, t)=x^{(j)}(\vartheta+2 \pi, t)$ be a variable to describe coherent motion of the j-th bunch (a perturbed longitudinal current, a transverse dipole moment). It can be decomposed into plane waves

$$
\begin{equation*}
x^{(j)}(\vartheta, t)=\frac{1}{2 \pi} \sum_{k} \int d \Omega x_{k}^{(j)}(\Omega) \mathrm{e}^{i k\left(\vartheta-\vartheta_{j}\right)-i \Omega t} \tag{1}
\end{equation*}
$$

with Ω being a frequency of Fourier Transform in t w.r.t. co-frame. In lab-frame, Ω is seen as a side-band $\omega=$ $k \omega_{0}+\Omega$. Harmonics $x_{k}^{(j)}(\Omega)$ are calculated in the coordinate system $\vartheta-\vartheta_{j}$ attached to the j-th bunch center. A set of x_{k} can be arranged into a $N \times 1$ column-vector

$$
\vec{x}=\left(\ldots, x_{k-1}, x_{k}, x_{k+1}, \ldots\right)^{T} \in \mathrm{C}_{N}
$$

from a linear complex vector space C_{N}. In practice, N is treated as its finite truncated dimension. Still, one can allow $N \rightarrow \infty$ if all the relevant limits do exist.

Stability problem of a subset beam can be stated as an eigenvalue problem for a linear operator acting in the extended space $\mathrm{C}_{N \cdot M}=\oplus \sum_{j} \mathrm{C}_{N}^{(j)}$ where $\mathrm{C}_{N}^{(j)} \ni \vec{x}^{(j)}$,

$$
\begin{equation*}
\lambda x_{k}^{(j)}=\frac{1}{M} \sum_{k^{\prime}, j^{\prime}} \nu_{j} P_{k k^{\prime}}(\Omega) \mathrm{e}^{i k^{\prime}\left(\vartheta_{j}-\vartheta_{j^{\prime}}\right)} x_{k^{\prime}}^{\left(j^{\prime}\right)} \tag{2}
\end{equation*}
$$

Matrix $P_{k k^{\prime}}(\Omega)$ operates in C_{N}. Its form varies slightly between longitudinal (L) and transverse (T) cases,

$$
P_{k k^{\prime}}(\Omega)=\left\{\begin{array}{l}
Y_{k k^{\prime}}^{(L)}(\Omega) Z_{k^{\prime}}^{(L)}\left(k^{\prime} \omega_{0}+\Omega\right) / k^{\prime} \tag{3}\\
Y_{k k^{\prime}}^{(T)}(\Omega) Z_{k^{\prime}}^{(T)}\left(k^{\prime} \omega_{0}+\Omega\right)
\end{array}\right.
$$

Coupling impedances $Z_{k}^{(L)}(\omega) / k$ and $Z_{k}^{(T)}(\omega)$ exhibit similar reflection properties w.r.t. $\omega, k=0$. Bunch transfer functions $Y_{k k^{\prime}}^{(L, T)} \propto J_{0 b}$ can be found elsewhere and include effects of Landau damping, decomposition into multipole (L) or head-tail dipole (T) modes, etc.
Functions of integer variable j are conveniently decomposed with Discrete Fourier Transform (DFT):

$$
\begin{align*}
\vec{x}^{(n)} & =M^{-1} \sum_{j} \vec{x}^{(j)} \exp (2 \pi i n j / M) \tag{4}\\
\vec{x}^{(j)} & =\sum_{n} \vec{x}^{(n)} \exp (-2 \pi i n j / M) \tag{5}
\end{align*}
$$

where $n=0,1, \ldots, M-1$ is a wave number of DFT.
To simplify notations, let \widehat{I}_{n} be a projection operator from C_{N} to $\mathrm{C}_{N / M}$. Its matrix elements are $\delta_{k k^{\prime}} \sum_{l} \delta_{k, n+M l}$ with $\delta_{i j}$ the Kronecker delta-symbol, $\sum_{n} \widehat{I}_{n}=\operatorname{diag}(\ldots, 1,1, \ldots)$, the matrix unit.
Transformation of Eq. 2 to DFT-images yields

$$
\begin{equation*}
\lambda \vec{x}^{(n)}=\sum_{n^{\prime}} \Delta_{n n^{\prime}} \widehat{P}(\Omega) \widehat{I}_{n^{\prime}} \vec{x}^{\left(n^{\prime}\right)} \tag{6}
\end{equation*}
$$

where $\Delta_{n n^{\prime}}$ denotes an interference factor

$$
\begin{equation*}
\Delta_{n n^{\prime}}=M^{-1} \sum_{j} \nu_{j} \exp \left(2 \pi i\left(n-n^{\prime}\right) j / M\right) \tag{7}
\end{equation*}
$$

Eq. 6 shows that instability in a subset beam with $\nu_{j} \neq$ const mixes all DFT-harmonics of perturbation. Characteristic equation of instability and sufficient condition of beam stability are, respectively,

$$
\begin{equation*}
\lambda_{p}(\Omega)=1, \quad \max _{p, \Omega_{1}}\left|\lambda_{p}\left(\Omega=\Omega_{1}+i 0\right)\right| \leq 1 \tag{8}
\end{equation*}
$$

Here p is a generalized index of the beam oscillation eigenmode, its eigenfrequency Ω_{p} being a root of the first of Eqs.8. Instability occurs when $\operatorname{Im} \Omega_{p}>0$.

3 BASIC BEAM

Let us label its eigenvalues and eigenvectors with a subscript " \bullet ". Now that $\nu_{j}=1$ and $\Delta_{n n^{\prime}}=\delta_{n n^{\prime}}$, Eq. 6 splits into M independent problems

$$
\begin{equation*}
\lambda_{\bullet} \vec{x}_{\bullet}^{(n)}=\widehat{P}(\Omega) \widehat{I}_{n} \vec{x}_{\bullet}^{(n)}, \quad n=0,1, \ldots, M-1 . \tag{9}
\end{equation*}
$$

The perfect beam periodicity decouples all M DFTharmonics. Each of them describes a possible coupledbunch (CB) mode. Thus, the first sub-index of the basicbeam eigenmode index $\ell=(n, m)$ is naturally found, the latter m being an index of inside-bunch mode whose components are identified in solving specific problems. Spacial structure of mode $\ell=(n, m)$ is merely

$$
\begin{equation*}
\vec{x}_{\bullet \ell}^{\left(n^{\prime}\right)}=\vec{x}_{\bullet \ell}^{(n)} \delta_{n n^{\prime}}, \quad \vec{x}_{\bullet \ell}^{(j)}=\vec{x}_{\bullet \ell}^{(n)} \exp (-2 \pi i n j / M) \tag{10}
\end{equation*}
$$

which is an usual CB oscillation with a phase shift of $2 \pi n / M$ between adjacent bunches. These modes are mutually orthogonal being treated as hyper-vectors from extended space $\mathrm{C}_{N \cdot M}$ with a scalar product

$$
\begin{equation*}
\langle\breve{a}, \breve{b}\rangle=M^{-1} \sum_{k, j} w_{k} a_{k}^{(j)} b_{k}^{(j) *} ; \breve{a}, \breve{b} \in \mathrm{C}_{N \cdot M} \tag{11}
\end{equation*}
$$

where w_{k} is a real positive weight. Vector $\vec{x} \in \mathrm{C}_{N}$ is a projection of $\breve{x} \in \mathrm{C}_{N \cdot M}$.

Eq. 9 has only each M-th its eigenvalue $\lambda_{\bullet} \ell \not \equiv 0$. These can be obtained on projecting Eq. 9 into a subspace $\vec{x}^{\prime}=$ $\widehat{I}_{n} \vec{x} \in \mathrm{C}_{N / M}$ of a smaller dimension,

$$
\begin{equation*}
\lambda_{\bullet} \vec{x}_{\bullet}^{\prime(n)}=\widehat{I}_{n} \widehat{P}(\Omega) \vec{x}_{\bullet}^{\prime(n)} \tag{12}
\end{equation*}
$$

Eq. 12 is amenable to a straightforward search for $\lambda_{\bullet} \ell \not \equiv 0$ and $\vec{x}_{\bullet \ell}^{(n)}$ with computer codes available. Then, Eq. 9 can be used to recover full-component vectors $\vec{x}_{\bullet \ell}^{(n)} \in \mathrm{C}_{N}$ which describe observable motion of individual bunches. All these formally belong to a range of operator $\widehat{P} \widehat{I}_{n}$.

On the contrary, vectors from a null space of $\widehat{P} \widehat{I}_{n}$ with $\lambda_{\bullet} \ell \equiv 0$ describe a hidden, unobservable motion. Eq. 9 shows that the null space of $\widehat{P} \widehat{I}_{n}$ is a set of $\vec{x}: \widehat{I}_{n} \vec{x}=\overrightarrow{0}$. Hence, eigenvectors of the hidden motion may be composed as, say, a natural orthogonal set of $N \times 1$ columnvectors $\vec{x}_{\bullet \ell}^{(n)}=(\ldots, 0,1,0, \ldots)^{T}$ with a single non-trivial component ' 1 ' put consequently into every line save for the $(n+M l)$-th ones, l is an integer.

Thus, in practice, a complete set of eigenvalues $\lambda_{\bullet \ell}$ and eigenvectors $\vec{x}_{\bullet \ell}^{(n)}$ of Eq. 9 can be found. For a given n, the span over $\vec{x}_{\bullet \ell}^{(n)}$ originates the entire space C_{N}. Hence, $\vec{x}_{\bullet \ell}^{(n)}$ can be used as a coordinate basis in C_{N}. Its (Hermitian positive defined) Gram matrix is

$$
\begin{equation*}
G_{m m^{\prime}}^{(n)}=\left(\vec{x}_{\bullet(n, m)}^{(n)}, \vec{x}_{\bullet\left(n, m^{\prime}\right)}^{(n)}\right) \tag{13}
\end{equation*}
$$

where (...) is a scalar product consistent with Eq.11,

$$
\begin{equation*}
(\vec{a}, \vec{b})=\sum_{k} w_{k} a_{k} b_{k}^{*} ; \quad \vec{a}, \vec{b} \in \mathrm{C}_{N} \tag{14}
\end{equation*}
$$

Operator $\widehat{P} \widehat{I}_{n}$ is not a normal one, hence basis of $\vec{x}_{\bullet \ell}^{(n)}$ is non-orthogonal, and $G_{m m^{\prime}}^{(n)}$ is a non-diagonal matrix.

Eq. 12 is commonly treated at length in an instability theory. Naturally, the desire arises to use its supposedly known spectrum $\lambda_{\bullet \ell}$ (and $G_{m m^{\prime}}^{(n)}$) to localize spectrum λ_{p} of a subset beam and study its stability with the second of Eqs.8.

4 SUBSET BEAM

Multiply both sides of Eq. 2 by $M^{-1} w_{k} x_{k}^{(j) *} / \nu_{j}$ and sum over k, j. Rewrite the result so as to arrange formally a Rayleigh-Ritz ratio \mathcal{R} for a linear operator $Q_{k k^{\prime}}^{\left(j j^{\prime}\right)}=$ $M^{-1} P_{k k^{\prime}} \exp \left(i k^{\prime}\left(\vartheta_{j}-\vartheta_{j^{\prime}}\right)\right)$ in $\mathrm{C}_{N \cdot M}$,

$$
\begin{equation*}
\lambda_{p}=\xi \mathcal{R}, \quad \xi=\frac{\sum_{k, j} w_{k}\left|x_{k}^{(j)}\right|^{2}}{\sum_{k, j} w_{k}\left|x_{k}^{(j)}\right|^{2} / \nu_{j}}, \quad \mathcal{R}=\frac{\langle\widehat{Q} \breve{x}, \breve{x}\rangle}{\langle\breve{x}, \breve{x}\rangle} \tag{15}
\end{equation*}
$$

Eq. 2 shows that $\left|x_{k}^{(j)}\right| \propto \nu_{j}$. Hence $\left|x_{k}^{(j)}\right|^{2} / \nu_{j} \propto \nu_{j}$ and tending to a limit $\nu_{j} \rightarrow 0$ (empty bunch) in ξ inflicts no problems. As $\nu_{j} \geq 0$ by definition, it is easy to see that $\xi \in \operatorname{Co}\left(\nu_{j}\right)$. For real ν_{j} it entails

$$
\begin{equation*}
\min _{j} \nu_{j} \leq \xi \leq \max _{j} \nu_{j}=1 \tag{16}
\end{equation*}
$$

Now use $\vartheta_{j}=-2 \pi j / M$ in \widehat{Q} and DFT from Eq. 5 to get

$$
\begin{align*}
\langle\widehat{Q} \breve{x}, \breve{x}\rangle & =\sum_{n}\left(\widehat{P} \widehat{I}_{n} \vec{x}^{(n)}, \vec{x}^{(n)}\right) \tag{17}\\
\langle\breve{x}, \breve{x}\rangle & =\sum_{n}\left(\vec{x}^{(n)}, \vec{x}^{(n)}\right)>0 \tag{18}
\end{align*}
$$

The last Eq. is but the Parseval sum due to orthogonality of CB modes in $\mathrm{C}_{N \cdot M}$.

For each n, eigenvectors $\vec{x}_{\bullet \ell}^{(n)}$ of $\widehat{P} \widehat{I}_{n}-$ modes of the basic beam - construct a complete countable skew basis in C_{N}. It can be used for coordinate representation of modes $\vec{x}_{p}^{(n)}$ of a subset beam,

$$
\begin{equation*}
\vec{x}_{p}^{(n)}=\sum_{m} c_{\ell} \vec{x}_{\bullet \ell}^{(n)} . \tag{19}
\end{equation*}
$$

Inserting this decomposition into Eqs.17,18 yields

$$
\begin{align*}
\langle\widehat{Q} \breve{x}, \breve{x}\rangle & =\sum_{n, m, m^{\prime}} \lambda_{\bullet \ell} c_{\ell} G_{m m^{\prime}}^{(n)} c_{\ell^{\prime}}^{*} \tag{20}\\
\langle\breve{x}, \breve{x}\rangle & =\sum_{n, m, m^{\prime}} c_{\ell} G_{m m^{\prime}}^{(n)} c_{\ell^{\prime}}^{*}>0 \tag{21}
\end{align*}
$$

where $\ell^{\prime}=\left(n, m^{\prime}\right)$. One does not know coordinates c_{ℓ} a priori. (Otherwise, spectral estimates in question would have not been required.) Let us allow c_{ℓ} be arbitrary complex numbers, and study the so called numerical field of \widehat{Q} — a set $\overline{\mathcal{R}}$ of possible values of Rayleigh-Ritz ratios \mathcal{R} :

$$
\begin{align*}
\mathcal{R} & =\sum_{n, m} a_{\ell} \lambda_{\bullet \ell}, \quad \sum_{n, m} a_{\ell}=1 \tag{22}\\
a_{\ell} & =\frac{c_{\ell} \sum_{m^{\prime}} G_{m m^{\prime}}^{(n)} c_{\ell^{\prime}}^{*}}{\sum_{n, m} c_{\ell} \sum_{m^{\prime}} G_{m m^{\prime}}^{(n)} c_{\ell^{\prime}}^{*}} \tag{23}
\end{align*}
$$

Then, majorizing the leftmost of Eqs.15, one gets the 'upper' estimate of a subset-beam spectrum locus,

$$
\begin{equation*}
\lambda_{p} \in \overline{\mathcal{R}} \subset \mathrm{C}_{1} \tag{24}
\end{equation*}
$$

Linear algebra tells that $\overline{\mathcal{R}}$, being a numerical field of a linear operator in $\mathrm{C}_{N \cdot M}$, is: (i) a bounded closed set in C_{1}, (ii) $\forall \lambda_{\bullet \ell} \in \overline{\mathcal{R}}$, and (iii) $\overline{\mathcal{R}}$ is a convex set that contains inside every straight-line segment which connects its elements pairwise.
Should matrix $G_{m m^{\prime}}^{(n)}$ be diagonal, one would have got $a_{\ell}=a_{\ell}^{*}, 0 \leq a_{\ell} \leq 1$ and, hence, $\overline{\mathcal{R}}=\operatorname{Co}\left(\lambda_{\bullet(n, m)}\right)$ which would have reproduced the result quoted in Sect.1. However, generally $G_{m m^{\prime}}^{(n)} \neq \delta_{m m^{\prime}}$. Only on adopting a single-mode model when a bunch is deprived of all but the m_{1}-th degree of freedom, i.e. $\lambda_{\bullet \ell}=\lambda_{\bullet \ell} \delta_{m m_{1}}$ and $c_{\ell}=c_{\ell} \delta_{m m_{1}}$, one virtually gets a diagonal 1×1 matrix $G_{m m^{\prime}}^{(n)}$. This kind of assumption is tacitly implied in [1, 2]. It is well adequate when beam interacts with a band-pass high-Q HOM impedance $((L)$ or (T), chromaticity off $)$, or with a low-pass narrow-band resistive-wall impedance $((T)$, chromaticity on and off).
In a multi-mode model, put Eq. 19 into Eq. 6 to reveal structure of subset-beam observable ($\lambda_{p} \not \equiv 0$) motion,

$$
\begin{equation*}
\vec{x}_{p}^{(n)}=\sum_{\left\{\ell^{\prime}=\left(n^{\prime}, m^{\prime}\right): \lambda_{\bullet \ell^{\prime}} \neq 0\right\}} \Delta_{n n^{\prime}} c_{\ell^{\prime}}\left(\lambda_{\bullet \ell^{\prime}} / \lambda_{p}\right) \vec{x}_{\bullet \ell^{\prime}}^{\left(n^{\prime}\right)} \tag{25}
\end{equation*}
$$

The span thus obtained over observable $\vec{x}_{\bullet \ell^{\prime}}^{\left(n^{\prime}\right)}$ does not necessarily originate the entire C_{N}. Calculations show that for a given inside-bunch mode m eigenvector $\vec{x}_{\bullet(n, m)}^{(n)}$ is nearly independent of CB mode n. Mostly, it carries data on spacial localization of perturbation inside bunch. Comparison of Eqs.19,25 with $\vec{x}_{\bullet(n, m)}^{(n)} \approx \vec{x}_{\bullet\left(n^{\prime}, m\right)}^{\left(n^{\prime}\right)}$ in mind shows that a reasonable trial guess of subset-beam motion is arrived at with a truncated series

$$
\begin{equation*}
\vec{x}_{p}^{(n)} \simeq \sum_{\left\{m: \lambda_{\bullet} \ell \neq 0\right\}} c_{\ell} \vec{x}_{\bullet \ell}^{(n)} \tag{26}
\end{equation*}
$$

where residuum $\Delta \vec{x}^{(n)}$ from a null space of $\widehat{P} \widehat{I}_{n}$ with $\widehat{I}_{n} \Delta \vec{x}^{(n)}=\overrightarrow{0}$ is disregarded due to a negligible value expected. In practice, use of Eq. 26 entails that summation in Eqs.22,23 should go over $n=0,1, \ldots, M-1$ and the observable subset $\left\{m, m^{\prime}: \lambda_{\bullet(n, m)}, \lambda_{\bullet\left(n, m^{\prime}\right)} \not \equiv 0\right\}$ only.

The last step is to search with computer for boundary of $\overline{\mathcal{R}}$ by, say, a Monte-Carlo scan over coordinates c_{ℓ}. By the way, due to convexity of $\overline{\mathcal{R}}$, any partial image of a subset in $\mathrm{C}_{N \cdot M}$ can be lawfully diluted to the nearest convex set.

The figure shows this approach applied to study resistive-wall instability in the UNK (betatron tune is $Q_{T}=55.7$). Eigenvalues are interpreted as instability driving impedances ζ to be plotted in (Z)-plane of a threshold map. Eigenmode index is $\ell=\left(n, m_{\vartheta}, r\right)$ where head-tail mode is $m_{\vartheta}=0$ throughout. The impedance is sampled with Eq. 12 at frequency lines separated by $M \omega_{0}$ in $|\omega| \lesssim 3.5 M \omega_{0}$. Thus, at most 7 radial modes $r=0,1, \ldots, 6$ are involved. Markers plot eigenvalues for ($n=-76,-75, \ldots,-36 ; r=0$). Dashed broken line is a convex hull over ($n=-M / 2, \ldots, M / 2 ; r=0$) which stands for a single-mode model. Ellipses encircling the origin are partial boundaries to image a span over radial modes $r=0,1,2$ at a CB mode $n=-58,-57, \ldots,-54$ nearest to $n+Q_{T} \simeq 0$. Curve A images a span over ($n=-56,-55 ; r=0,1$), curve $B-$ that over $(n=$ $-57,-56 ; r=0,1)$. Thus, one can assess quantitatively stability of a subset w.r.t. the basic beams.

5 REFERENCES

[1] R.D.Kohaupt. DESY Preprint 85-139, 1985.
[2] V.Balbekov and S.Ivanov. Proc. of USPAC-89, Chicago, 1989, vol.2, pp.1400-1402.

[^0]: ${ }^{1} \mathrm{~A}$ convex hull $\mathrm{Co}\left(a_{i}\right)$ of array a_{i} is a set of linear combinations $\sum_{i} c_{i} a_{i}$ with $c_{i}=c_{i}^{*}, c_{i} \geq 0$, and $\sum_{i} c_{i}=1$.

