
A NEW ALARM SYSTEM PROCESSOR FOR ELETTRA

Paolo Michelini, Claudio Scafuri,
Sincrotrone Trieste, Padriciano 99, 34012 Trieste, Italy

ABSTRACT

The new ELETTRA alarm system is a set of programs
used to log alarm events, report them to control room
operators and feed them to analysis programs. The design
of the new alarm system is based on an object oriented
distributed architecture with an extend client/server
communication model; moreover it has the added
constraint of supporting the old RPC based alarm delivery
system. The new system, written almost entirely in C++,
shows that the object oriented paradigm is a natural choice
for building event driven programs and that it is possible
to encapsulate RPC based servers into C++ classes. The
Motif graphical user interface is also written in C++ and
is based on the well known concept of component by
Douglas Young.

1 ALARM SYSTEM

1.1 Definition of alarms

Alarms are events which are triggered when a set of
predefined conditions is satisfied. Generally the conditions
to generate an alarm are related to malfunctions,
anomalous conditions or potentially hazardous situations
for the personnel or plant.
Alarms can thus be used to start some automatic safety
procedure and to alert the human operators. In our system
the first task is autonomously carried out by the interlock
system [1], the second is handled by ELETTRA Alarm
System.

1.2 Overview of the ELETTRA Alarm System

The ELETTRA Alarm System is integrated in the
ELETTRA Control System [1]; alarms are generated at
the lowest layer (EIU) of the system by an alarm
processor, a task which periodically checks a set of field
variables. The alarm notification is sent to the
intermediate layer through the MIL1553b field bus [2].
Here an appropriate process formats the alarm notification
into a standard alarm message, and notifies the alarm
server by means of a remote procedure call (RPC) based
on the cern/nc package. The alarm server is a task running
on the upper layer of the Control System, which collects
and processes the various alarms.

2 THE NEW PROJECT

2.1 Goals an constraints

The project for a new alarm system started with the
following goals:
● robustness;
● responsiveness;
● clear, Motif compliant user interface;
● open architecture for future expansions;
● support for many contemporary users;
The new project had to respect the constraint of using
some of the existing components:
● lower layer system;
● RPC interface;
● configuration files.

2.2 Functionality and architecture

The purpose of alarm system is to alert the control room,
either human operator or a diagnostic system, of the
occurrence of alarms and to manage a list of the active
alarms. An alarm becomes active when an alarm message
is detected. It becomes inactive after a re-entry message for
that alarm is detected and it has been acknowledged from
the control room. All these transitions must also be
logged into an history system.

A distributed architecture has been chosen, with an
extended client/server communication model. A unique
server manages the list of active alarms in order to
guarantee the correctness and coherency of the
information. The list of alarms is altered by the server in
response to external events:
● alarm messages (RPC) coming from the field;
● acknowledge request messages from client programs;
Incoming alarm messages are also checked against a
configuration file, containing the list of legal alarms and
their characteristics.
Anytime there is a change in the alarm list the server
notifies the event to each of the connected clients. and
writes a record into a log file. The communication from
server to clients is done via TCP/IP streams. The alarm
server exports also an auxiliary RPC for reading the
complete alarm list. The server capability of sending
unsolicited message to its clients is an extension of the
traditional client/server model of distributed computing.

The client is a Motif program which displays the
alarm notifications generated by the server. It is also
known as the Alarm_interface. The main window displays
the synthetic descriptions of each alarm; the operator can
request more information about an alarm to be displayed
in a secondary window. These information is extracted

from the alarm configuration file and from the actual
value of the alarm. In addition to the visual notification
the alarm interface generates also an audio signal to attract
the operator attention. The audio signal remains on until
it is turned off explicitly or by requesting an alarm
acknowledge. It is possible to run many Alarm interfaces
concurrently, because the alarm server will maintain the
alarm list correct.

3 SOFTWARE DESIGN

3.1 General methodologies

The project has been designed keeping in mind some
of the principles of object oriented programming [3]. Both
the client and the server have been decomposed into a
series of separate entities (objects) which interact by
means of messages. The reception of a message triggers
the execution of some procedures, known as methods,
inside the object; some of these methods will themselves
send an appropriate message to other objects.
In this way the program is completely event driven,
ensuring a fast response when an alarm must be processed
and a negligible waste of processing resources when there
are no events to handle.
The programming language used for the development is
mainly C++[4] with some modules written in ANSI C .

3.2 Server structure

The server program is composed of the following
objects:
● AlarmServer: receives and validates alarm messages
from the field.
● AlarmConfiguration : parses the alarm configuration
file and returns information about the various alarms
● AlarmStatus: manages the list of active alarms, also
handles the requests of acknowledge.
● AlarmLog: manages the writing to disk of the all the
relevant events.
● Talker: handles connections with clients, sends
notifications of events to clients.
This organisation is fully modular, and allows us to
modify the internal structure and functionality of each
object provided that its external interface is not changed.
For example, it would be very easy to modify the internal
structure of the AlarmLog object to store the events into
an external database system instead of the local disc file.
The programming effort would be directed only to the
modification of the AlarmLog object, all the other client
objects would remain unchanged.
The AlarmServer object is particularly interesting,
because it encapsulates the functionality of a traditional
RPC server. Although the cern/nc rpc library is designed
for ANSI C we have found that with some small
modifications the automatically generated stubs can be
easily used inside a C++ class. If further integration of
RPC services into C++ objects will be needed, we think

that it will be possible to modify the cern/nc package to
generate directly C++ compatible code.
Some of the events to which the client reacts are
generated outside the main program and must be reported
to the appropriate internal objects. In our case all the
external events are in the form of incoming network
messages. A simple event loop based on the well known
select() UNIX call fulfils this task and is the core of the
main function of the server.

3.3 Client structure

The client program is subdivided into the following
objects:
● Listener: this is the companion of the client Talker
object. It opens the TCP connection with the server and
handles the notifications sent by the client.
● AlarmConfiguration: this object is identical to the one
used in the server program.
● FanIn: this object extracts the notifications from the
Listener objects and distributes them to object of the class
FanOut through UNIX pipes. In practice it works as a
sort of multiplexer. It has the additional task of sending
the acknowledge requests to the server.
● FanOut: implements the receiving end of the pipe,
where the messages are used.
With this scheme it is possible to share the services, that
is notifications and acknowledge requests, of one server
among many client modules, using the minimum number
of TCP and RPC connections.
In the current alarm client the objects sharing the
messages extracted by FanOut objects are:
● AlarmBeeper: handles the generation of the audio signal
whenever there is an alarm occurrence.
● AlarmUI: handles the graphical representation of alarms
in a Motif [5] window. This object has been designed
according to the "User Interface Component" methodology
by D. Young[6] and uses the "Matrix" widget from
Bellcore [7], which has been put in the public domain.
Internally it handles the list of displayed alarms with a
linked list data structure.
● ShowDetail: another "User Interface Component" used
to show detailed information about one alarm. It reads and
formats information from the AlamUI and
AlarmConfiguration objects.

3.5 User Interface Component

The "User Interface Component" methodology is a
technique to use Motif or other X11 "widgets" inside C++
classes to be used as the building blocks of the graphical
user interface of a program. The idea is not to encapsulate
directly the native widgets, but rather to write classes
containing one or more widgets to extend and customise
the behaviour of the widget library. This technique
exploits some very useful characteristics of the X11/Motif
environment to improve the easy of use of components;
for example we can use the resource mechanism to set the

values of some internal variables (properties) of our
components at creation time. Although these operations
can be done "by hand" using low level X11 library
functions, the use of the predefined UIComponet class as
the parent of our class makes this task easy and
straightforward.

With this technique the need to write custom
widgets [8], a very difficult and time consuming task, is
almost eliminated.

4 CONCLUSIONS
We have seen that an object oriented design technique

implemented with an objected oriented language like C++
is a good basys for writing an event driven distributed
system, specially if a good collection of base classes is
available; in our case the UIcomponet class. These
techniques require more emphasis on the analysis and
design phase of the project, which must be complete and
accurate; on the other hand the implementation part is be
easier, since the use of standard classes, available with
almost any commercial C++ implementation, relieves the
programmer from writing again and again the basic
algorithms and data structures. The time needed to
complete the project has not been substantially shorter
than if we had used a traditional approach, but we were
able to produce a very robust system, with satisfactory
performances which, up to now, showed very few
problems. Moreover, the classes and structures we have
produced will allow us to extend the system functions
easily.

REFERENCES
[1] D. Bulfone, "Status and prospects of the ELETTRA

control system"; Nuclear Instrumentation and
Methods in Physics Research A 352 (1994) 63-66
North Holland

[2] D. Bulfone et al. "The ELETTRA Field Highway
System"; Proc Int. Conf. on Accelerator and Large
Experimental Physics Control Systems, Tsukuba,
Japan, 1991.

[3] P. Coad, E. Yourdon, “ Object - oriented Analysis”;
Prentice-Hall, 1991.

[4] B. Stroustroup, "The C++ Programming Language";
Addison-Wesley , 1987.

[5] D. Heller, "Motif Programming Manual"; O'Reilly
& Associates,1992.

[6] D. Young, "Object-Oriented Programming with C++
and OSF/Motif"; Prentice-Hall, 1995.

[7] A. Wason, "XbaeMatrix(3x)"; Bellcore inc. 1995.
(availabe in the public domain distribution of the
XBAE Widget Set).

[8] D. McMinds/J.P. Whitty,"Writing Your Own
OSF/Motif Widgets"; Prentice-Hall,1995.

