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Abstract

In the CERN PS Booster (PSB), longitudinal Beam Trans-
fer Function (BTF) measurements are used to determine
the energy spectrum of the linac beam injected and coast-
ing on an extended flat bottom of the magnet cycle. The
short duration (about 10 ms) of the measurement and co-
herent signals from density structure of the injected beam
yielded strongly fluctuating results, and the system fell into
disuse for a while.

BTF measurements can be degraded by different kinds
of noise, which together with small excitations to avoid
alteration of the beam, give a big variance of the results.
Particularly in the PSB, this is seen as a base-line offset
(BLO) of the energy distribution, whose variance is due to
the noise and is not to be improved by longer data records.
Different signal processing techniques are investigated to
reduce the variance, where black-box parametric estima-
tion methods are shown to have significantly lower BLO
than other methods applied in the field.

1 INTRODUCTION

The energy spread of a coasting beam can be measured by
examining the Schottky (energy) spectrum [1]. The PSB
beam lacks this possibility due to residual structure from
the linac and injection processes, causing much stronger
coherent signals than the Schottky signal within the PSB
cycle time 1.2 s [2]. The signal-to-noise ratio (SNR) is im-
proved by using BTF measurements. The frequency dis-
tributionF0, which is related to the energy distribution, is
retrieved by integrating the real-part of the BTF

rk(!) = C

�
�
�

n

dF0(!)

d!r
+ jPV

Z dF0(�!r)
d!r

! � n!r
d!r

�
: (1)

n is the harmonic of the revolution frequency!r [3].
Surrounding structures affect the beam, and can be mod-

elled as a coupling impedanceZk that has a non-linear ef-
fect on the BTF [4]. For low energy machines as the PSB,
the coupling impedance mainly consists of a negative in-
ductance due to space charge.

A BTF measurement always contains different kinds of
noise that degrade the result. These can be thermal, quanti-
sation and Schottky noise, but mainly consist of mentioned
density structure of the PSB beam. The BTF estimate is a
linear combination of measurement data, which can be re-
garded as a realisation of a stochastic process. Hence, an
integration (summation in the discrete case) of the BTF is

a random variable. The value of the integration far away
from the main response we call the base-line offset (BLO):
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To decrease the effect of the noise and to get a smaller
BLO variance, different signal processing methods have
been investigated, both using simulated and measured data.

2 MEASUREMENT SET-UP

The measurements made at the PSB are carried out on
a 50 MeV coasting proton beam which is kept stable for
about 500 ms. The excitation signal is digitally produced
which after up-mixing drives a cavity that has been detuned
to avoid self-bunching of the beam. The cavity gap signal
is returned to be used as a reference signalu(t). The re-
sponse of the beamy(t) is recorded from a wall-current
monitor. Both reference and response signals are quadra-
ture down-mixed to save bandwidth (sampling rate) and
thus are complex quantities. The buffers for saving sam-
pled data are rather limited (1024 samples) compared to
the time of stable beam: a bandwidth of 100 kHz, which is
suitable for measurements around the sixth harmonic, gives
a total measurement time of the order of 10 ms.

The model we use is a transfer function driven by an
input signal and having noisev(t) added to the response:

y(t) = rk(u(t)) + v(t): (3)

3 SIGNAL PROCESSING METHODS

3.1 Non-parametric Methods

A common way of estimating a transfer function, is to di-
vide the Discrete Fourier Transforms of the response and
reference signals. This is called the Empirical Transfer
Function Estimate (ETFE) in [5].

If the transfer function is a smooth function, the ETFE
can be smoothed by weighted averaging with the variance
of the estimate and a weighting functionW (!). The width
of the weighting window controls the trade-off between
variance and bias. For this smoothed ETFE we use a Ham-
ming window in our measurements [6].

It is also possible to smooth the transfer function esti-
mate by dividing the data record intoR batches of length
M and forming the averaged ETFE. We useR = 4 in the
measurements.



Another smoothed estimate used for BTFs is the Time
Gated Estimate (TGE). This transforms the ETFE into time
domain and removes noise by gating the impulse response
[4]. The TGE is the same as the smoothed ETFE when
the estimate variance is constant and the same smoothing
window is used. However, here we use a combination of
Hamming and rectangular windows for the TGE [6].

3.2 Black-box Prediction Error Method (PEM)

Another approach to estimate the transfer function from
digitised data is to assume the BTF to be a digital filter
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q�1 is a time-delay operator such thatq�1u(t) = u(t� 1).
Similarly, assuming a noise model to be a digital filter
driven by a white noise processe(t), we get a general
model of the BTF measurement to be as

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t): (5)

There are usually much fewer parameters to be estimated
than number of data, so there is a compression of data and
variance decreases. The output can be predicted having a
model (5). The model can then be optimised by minimising
a scalar norm, which depends on the prediction errors [5].

A good model for BTF measurements is a Box-Jenkins
model (A(q) � 1 in equation (5)) with polynomial orders
(nb, nc, nd andnf ) of three.

3.3 Integration of Estimate

We saw earlier that the energy distribution is retrieved by
integrating the real part of the BTF. For long recordsN , the
integral in equation (2) can be approximated by the sum of
sample values normalised with2�=NT .

All estimates are asymptotically uncorrelated at different
frequencies [5]. The variance of the BLO is hence the sum
of the variances ofRefr̂Ng at each frequency. Further with
the assumption that the SNR is constant for all frequencies,
the BLO variance is inversely proportional toN and SNR:
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Interestingly, the same assumptions for the averaged
ETFE gives the same BLO variance. This is due to the
fact that the gain in variance at each frequency, is lost in
the number of frequency points.

When the TGE uses a normalised time gating window
(w�(0) = 1), it can be shown that the BLO takes exactly
the same value as when using the ETFE, due to circular
convolution [6]. Hence, the BLO variance is also the same.
Note however, that at lower frequencies, the variance of
the distributionF̂0(!) is smaller, when using the averaged
ETFE or the TGE.

The smoothed ETFE is closely related to the TGE, so we
expect them to have similar results. Computer simulations
have also shown that the BLO variance decays withN . The
same result was also found with simulations for the PEM
estimate. Hence, equation (6) is valid for the smoothed
ETFE and the PEM estimates too.

4 SIMULATIONS

Simulations have been carried out to see how well the
different signal processing methods agree with a known
BTF. The simulated BTF is disturbed with additive thermal
(white) noise and Schottky noise [4]. The latter can also
be seen as the structured noise that is present in the BTF
measurements at the PSB, but with a larger magnitude.

The simulation uses corresponding physical data as for
the measurement set-up in section 2, and signal processing
parameters as in section 3. The reference signalu(t) from
an actual measurement at the PSB is used as input to the
simulation model.

Regarding the stability diagram, the PEM is the far best
model. The ETFE and the averaged ETFE are not suitable
for such usage, since they are difficult to evaluate. How-
ever, the smoothed ETFE and the TGE give some informa-
tion, see figure 1.
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Figure 1: Stability diagrams. Simulated beam with nor-
mally distributed energy spread: Smoothed ETFE (dot-
ted), TGE (dashed), PEM (dash-dotted) and noise-free BTF
(solid).

All smoothing methods improve the ETFE to different
extents, and at a fairly good SNR they all give good re-
sults concerning the integrated real part. However, the
PEM gives a significantly smaller BLO, when the (simu-
lated) measurement gives big deviations of base-line for
the other investigated methods. The averaged ETFE can
also increase the BLO, see figure 2.

For a less good SNR, the optimisation of the PEM does
not reach the same agreement with the simulated BTF.
However, the PEM still give better results than the other
methods.

When the beam is subject to a strong coupling
impedance, the stability diagram is (usually) moved closer
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Figure 2: Integrated real parts of simulated BTF from beam
with normally distributed energy spread: ETFE (dashed),
averaged ETFE (thick dashed), smoothed ETFE (dotted),
PEM (dash-dotted) and noise-free BTF (solid). (TGE is
not plotted, but practically coincides with ETFE.)

to the origin, whereby some samples may change sign. The
stability diagram thus still has the same ‘goodness’, but
when the corrected BTF is integrated, there are samples
that give an erroneous contribution to the distribution. The
PEM again gives the best result.

Finally, a beam with a quadratic distribution was sim-
ulated to see how well the methods apply to distributions
with discontinuities. The PEM has bigger problems to ap-
ply to such distributions. Yet, the integration fits fairly well
with the simulated distribution.

5 MEASUREMENTS ON BEAM

The initial noise structure of the beam decays exponentially
with time. Hence, a good choice of time for the measure-
ment reduces the noise level, since a change of the energy
distribution cannot be observed during this noise degrada-
tion. A low intensity beam (� 2�1012 particles ) also avoids
density structures developing about 150 ms after injection.

If the beam is excited for a longer time, the energy dis-
tribution may be affected. This alteration is avoided with
smaller excitation levels. Measurements have shown that
a reduction of excitation power by 5 - 6 dB approximately
doubles the time to beam alteration. Hence, the BLO vari-
ance does not decrease by extending measurement time,
since gain in variance because of increasedN (see section
3), is lost due to the necessarily lowered excitation. Fig-
ure 3 shows the distribution from a BTF measurement in
the PSB with� 7:58 � 1011 particles and a well adjusted
excitation level.

6 CONCLUSIONS

We have studied BTF measurements contaminated with
different kinds of additive noise. Digital signal process-
ing methods have been investigated to reduce their effect,
where parametric estimation methods yielded substantially

3540 3550 3560 3570 3580 3590 3600 3610 3620 3630 3640

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 3: Integrated real parts of measured BTF: ETFE
(dashed), averaged ETFE (thick dashed), smoothed ETFE
(dotted), TGE (solid) and PEM (dash-dotted).

improved results, which has been demonstrated in BTF
simulations, with a Box-Jenkins model of order 3 for all
polynomials.

The integration of the real part of the BTF, representing
the energy distribution of the particle beam, is a random
variable, whose asymptotic valuêF0(1) we have called
the base-line offset (BLO). We have investigated its vari-
ance for the different BTF estimation methods, and found
that it decreases with SNR and record lengthN .

BTF measurements have shown that the excitation signal
must be carefully adjusted not to alter the beam, yet having
the best SNR. The structures in the beam distribution at
the PSB decays exponentially and reaches low levels after
100 ms, whereby the energy distribution has not changed.
Beam intensities are kept low to stay below thresholds of
coherent instabilities. Extending measurement duration has
no improving effect on the BLO variance, as the excitation
level has to be reduced in order to not alter the distribution.
For more details, see [6].
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