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Abstract

The polarizabilities of a ring-shaped cut in the wall of an ar-
bitrary thickness are calculated using a combination of an-
alytical, variational and numerical methods. The results are
applied to estimate the coupling impedances of button-type
beam position monitors.

1 INTRODUCTION

The coupling impedances of a small discontinuity on the
wall of the vacuum chamber of an accelerator have been
calculated in terms of the polarizabilities of the discontinu-
ity [1]. The fields scattered by an aperture in the wall can
be approximated by those due to effective electric P and
magneticM dipoles which are induced by an incident fields
Eh
� ;H

h
� [2]: P� = ��"0Eh

�=2; M� =  Hh
� =2, where �

is the electric polarizability and  is the magnetic suscep-
tibility of the aperture, �̂ is the normal vector to its plane,
and �̂ is the tangential one. When the wavelength of an in-
cident field is large compared to the aperture size, the po-
larizabilities can be found by solving a static problem [3].
The solutions are known for a circular hole of radius b in a
zero-thickness wall,  = 8b3=3 and � = 4b3=3 [2], and for
elliptic holes in a thin wall [3]. In the case of a thick wall the
polarizabilities have been studied using a variational tech-
nique for circular [4] and for elliptic [5] holes. Some ap-
proximate formulas for slots are compiled in [6].

In this paper, we present results for the polarizabilities of
an annular cut in the perfectly conducting planar wall of an
arbitrary thickness. Such an aperture can serve as a model of
a coax attached to the waveguide, when the wall thickness
is large. In the case of a thin or finite-thickness wall it is
an approximation of an electrode of the button-type beam
position monitors (BPMs). More details on derivation and
solutions can be found in Ref. [7].

2 INTEGRAL EQUATIONS

We are looking for the field distribution produced by the
aperture (hole) in a conducting wall of thickness t with its
midplane at z = 0 when it is illuminated by a homogeneous
static (normal electric or tangential magnetic) field from one
(z > 0) side. Following [8, 4], we split the problem into two
parts by decomposing the far field as E0=2 + E0=2 = E0

for z > 0, and E0=2 � E0=2 = 0 for z < 0, and con-
sider two separate problems: (i) the wall with the aperture
is immersed into homogeneous field E0=2 — the antisym-

metric problem for the potential w.r.t. z $ �z; and (ii)
the far field is directed to the wall from both sides, E0=2

for z > 0 and �E0=2 for z < 0, in which case the poten-
tial is symmetric. Solving these two problems yields�s and
�a, and gives us the inside polarizability �in = �s + �a,
which defines the effective dipole for the illuminated side
of the wall, z > t=2, and the outside one, �out = �s � �a,
for the shadow side. Likewise, the magnetic polarizabilities
are  in;out =  s �  a.

Consider the magnetic problem for an annular cut with
inner radius a and outer radius b. It can be reduced
to the integral equation for function g(r), defined by
2Hz(~r; t=2)=H0 = g(r) cos', (cf. [4] for a circular hole):

Z b

a

dr0r0g(r0)[Km(r; r0) +Kmt(r; r
0)] = r ; (1)

where the thin-wall part of the kernel
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has a ln-singularity at x = y, and the thickness-dependent
partKmt is related to the field expansion inside the aperture,
a < r; r0 < b, jzj < t=2,

Kmt(r; r
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;

(2)
with the upper (lower) line corresponding to the (anti) sym-
metric problem. Here 2F1 is the Gauss hypergeometric
function, �n are subsequent positive roots of the equation
J 0
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are the n-th order Bessel functions of the first and second
kind, and the expansion functions Fn are

Fn(r) = Cn [J1(�nr)� Y1(�nr) J
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The magnetic susceptibility is expressed in terms of g(r) [4]
as  = �

R b
a
drr2g(r). A solution g(r) of Eq. (1) must have

the correct singular behavior near the metal edge: g(r) /
��� when distance from the edge � = b� r! 0 or � =

r � a ! 0, where � = 1=2 for t = 0, and � = 1=3 for a
thick wall, assuming 90� edge. The electric problem can be
reduced to an integral equation in a similar way.



3 MAGNETIC PROBLEM

For a narrow annular cut (gap width w = b � a is small,
w � b) in a thin wall the integral equation has been solved
analytically [9], and the magnetic polarizability is

 = �2b2a [ln(32b=w)� 2]
�1

: (3)

It becomes large and close to that of a circular hole for rela-
tively narrow gaps,w=b � 0:1. The physical reason for this
surprising result is that an incident tangential magnetic field
deeply penetrates even through a narrow annular gap in the
thin wall, and this distortion creates a large effective mag-
netic dipole, comparable to that due to the open hole with
the same radius.

For a wide cut, we apply a variational technique devel-
oped in [4] converting (1) into the variational form

�b3

 
=

R
1

�
xdx

R
1

�
ydy g(x)K(x; y)g(y)hR
1

�
x2 dx g(x)

i2 ; (4)

where x = r0=b and y = r=b, and � = a=b, and kernel
K = Km +Kmt. Solution g(x) of Eq. (1) minimizes the
RHS of Eq. (4). We are looking for a solution in the form of
a series g(x) =

P
1

n=0 cngn(x) with unknown coefficients
cn. The choice of functions gn(x) is defined by the near-
edge behavior of the solution:

g0(x) = [(1� x)(x� �)]�� ; (5)

gk(x) = Pk�1 [(2x� � � 1)=(1� �)] for k � 1 ;

where � = 1=2 and Pn(x) = Tn(x) are Chebyshev’s poly-
nomials of the first kind for a zero-thickness wall, while for
a thick wall � = 1=3 and Pn(x) = C

1=6
n (x) are Gegen-

bauer’s polynomials. The choice of the polynomials is re-
lated to their orthogonality to the singular part g0(x) of the
solution. Denoting dn =

R
1

�
dxx2gn(x) and an = cndn,

we define matrix

Kkn =

Z
1

�

xdx

Z
1

�

ydy gk(x)K(x; y)gn(y)=(dkdn) ;

(6)
and convert Eq. (4) into the following form
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: (7)

Minimizing the RHS yields  = �b3
P

k;n

�
K�1

�
kn

,
where matrix K�1 is the inverse of the matrix K, Eq. (6).
The further procedure is straightforward: nth iteration (n =

0; 1; 2; : : :) corresponds to the matrix (6) truncated to the
size (n+ 1)� (n+ 1). Integrations and matrix inversions
have been carried out using Mathematica.

For the thin wall, polarizability  =  in =  out versus
the cut width is shown in Fig. 1 (dashed line). The analytical
solution (3) works well for narrow gaps, w=b � 0:15. The
process converges in three iterations for the whole range of
the cut width 0 � w=b � 1.
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Figure 1: Inside magnetic polarizability (in units of b3) of
annular cut versus its relative width w=b for thin (dashed)
and thick (solid) wall. Three dash-dotted curves are for
fixed ratio t=w = 0:5; 1; 2 (from top to bottom). The dot-
ted line corresponds to the circular hole in a thin wall.

For the case of a thick wall an asymptotic of  for a nar-
row gap can be obtained analytically using properties of
eigenvalues: �nb ! �(n � 1)=� for n � 2, and �1b '
1 + �=2 when � = w=b ! 0. Keeping only g0(x) and
leading term [

R
g(x)F1(x)]

2 / ��1=3 in Eq. (4), we get
 in = 2�b2w. Comparison to the results of direct varia-
tional calculations for the thick wall in Fig. 1 (solid line)
shows that this asymptotic works only for very small w=b.
Variational calculations are similar to those for the zero-
thickness case, except that one has to truncate the series
(2). We have kept up to 6 terms in this series, and conver-
gence was fast enough, requiring only up to 3 to 4 iterations.
The inside magnetic polarizabilities reach their “thick-wall”
asymptotic values approximately at t=b = 2, while the out-
side ones decrease exponentially with thickness increase,
see pictures in [7]. In the limitw=b! 1 our results coincide
with those for a circular hole [4].

4 ELECTRIC PROBLEM

For a narrow annular cut w � b, the electric polarizability
can be approximated by that of a narrow (yet bent) slot of
width w and length �(b + a) � w, i.e., � ' ~��(b + a),
where ~� denotes the electric polarizability per unit length
of the slot. The value of ~� can be obtained using conformal
mapping for a 2-D electrostatic problem: ~� = �w2=8 for
zero wall thickness, and ~� = w2=� for a thick wall, t� w,
see [6]. In this way, we have two analytical estimates for the
electric polarizability of a narrow annular cut:

� ' �2w2(b+ a)=8 for thin wall ; (8)

�in ' w2(b+ a) for thick wall : (9)

For narrow gaps the electric polarizability is small compared
to the magnetic one. The reason is that the normal electric
field does not penetrate far enough through the narrow gap,
unlike the tangential magnetic field on the parts of the annu-
lar cut which are parallel to its direction. The outside elec-
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Figure 2: Inside electric polarizability (in units of b3) of
annular cut versus its relative width w=b: analytical es-
timates (8) for thin (short-dashed) and (9) for thick wall
(long-dashed) and corresponding numerical results (thick
dots). The dotted line is for the circular hole in a thin wall.

tric polarizability of the gap in a thick wall can be estimated
as �out ' w2(b + a) exp(��t=w).

Both the electro- and magnetostatic problems under con-
sideration can be solved numerically. With boundary con-
ditions which ensure a given homogeneous field far from
the aperture plane, an electric or magnetic potential could be
computed. Unfortunately, for the magnetic problem, as well
as for an arbitrary-shaped aperture, this approach requires 3-
D codes. However, our electric problem is effectively a 2-D
one due to its axial symmetry. On the other hand, an appli-
cation of the variational technique to the electric problem is
complicated since its zero-thickness kernel is more singular.
That is why we choose the numerical approach for the wide
gap applying the POISSON code.

The results are shown in Fig. 2. Analytical estimates (8)
and (9) work amazingly well even for very wide gaps. We
intentionly did not interpolate the numerical dots in Fig. 2,
otherwise it would be difficult to distinguish the numerical
curves from those given by formulas (8)-(9); they overlap
except in the region w=b � 0:85. Numerical results for fi-
nite wall thickness t=w = 1 and even t=w = 0:5 are very
close to those for a very thick wall (the lower curve).

5 BEAM COUPLING IMPEDANCES

The beam-chamber coupling impedances can be obtained
using formulas from [1] and polarizabilities found above.
An annular cut of radius b and width w on the wall of a
circular pipe of radius r � b produces the longitudinal
impedance

Z(!) = �iZ0! ( in � �in)
�
8�2cr2

�
�1

; (10)

where ( in � �in)=b
3 is plotted in Fig. 3. For other cross

sections of the vacuum chamber, the transverse impedance,
and ReZ, see [10] and references therein. As seen from
Fig. 3, the impedance of a narrow cut in a thin wall is larger
than (but less than twice) that of a circular hole with radius
b, and tends to the last one when w ! b.
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Figure 3: Difference of inside polarizabilities (in units of
b3) of annular cut versus its relative widthw=b for different
wall thicknesses t = 0; w=2; w; 2w, and t� w (from top
to bottom). The dotted line corresponds to the circular hole
in a thin wall, ( � �)=b3 = 4=3.

As an example, we estimate the broad-band impedance
for BPMs of the PEP-II B-factory at SLAC and compare it
with 3-D numerical simulations [11]. The BPM has 4 but-
tons of inner radius a = 7:5 mm, gap width w = 1 mm,
at the distance r = 30 mm from the chamber axis. In fact,
the PEP-II chamber has an octagonal cross section, but we
approximate it by a circular pipe with radius 30 mm. While
the wall thickness is not specified in [11], it is usually a few
times larger than the gap width. The estimate (10) gives the
inductance L = 0:06 nH per BPM (Z = �i!L), when the
thickness is taken t = 2w = 2 mm, and L = 0:032 nH
for a very thick wall, t � w. The numerical result [11] is
L = 0:04 nH per BPM, in an agreement with our estimate.
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