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Abstract

The gauge invariance of the electromagnetic field, as well as
the geometrical restrictions imposed by construction for var-
ious accelerating devices, transform the field configuration
in a constrained system and require supplementary care in
the study of its dynamics. Using the BRST rules, we shall
construct a suitable phase space and an extended hamilto-
nian for such a special configuration of the electromagnetic
field.

1 INTRODUCTION

The process of acceleration of charged particles imposes the
use of various electromagnetic field configurations. For ex-
ample, in the method of plasmoids acceleration [1] charged
and neutral particles-plasmoids-are localized in the nodes
of an electric field and another electromagnetic field can
determine an accelerating motion of the plasmoids or can
produce forced oscillations of these structure, giving rise to
e.m. waves. The waves propagate and could accelerate on
its turn other charged particles. Between the possible con-
figurations of the electromagnetic field used in order to ob-
tain such accelerating motion we note the cylindrical axially
symmetric field E (z, r, φ):

Ez = E0 J0(krr) sin kzz sinωt
Er = −(kzkr )E0J1(krr) cos kzz sinωt

Bφ = ( k
ckr

)E0J1(krr) cos kzz sinωt
(1)

where Jn represents the Bessel function of ordern and k2
r+

k2
z = k2 = ω2/c2. In this case it has been demonstrate

that , under supplementary conditions, stable ellipsoidal and
thoroidal bunches may occur and the limitations in the ac-
celerating gradient have been calculated [2].

From another point of view, to consider conditions of the
type (1) is similar with the introduction for the electromag-
netic field of some geometrical constraints. As even the free
electromagnetic field has its own dynamical constraints, it is
clear that a coherent description of such configurations im-
pose the using of the specific methods of the constrained dy-
namical systems. The presentation of one of these methods,
the BRST technique, is the main goal of our paper. In the
next section we shall construct the extended phase space for
an irreducible theory as the electromagnetism is. The con-
struction will be achieved in the enlarged context of a multi-
ple BRST symmetry[3]. In the last section of the paper will
be obtained the extended hamiltonianof the electromagnetic

field that put together the dynamical constraints and the ge-
ometrical constraints of the type (1). This is the hamiltonian
that must be used in the description of the field configura-
tions used in the various accelerator devices.

2 IRREDUCIBLE GAUGE THEORIES

We consider a dynamical system that in the initial phase
space with the canonical variables (qi, pi), i = 1, ..., n is
described by the hamiltonianH0(q, p) and the set of linearly
independent first-class constraintsGα = Gα(q, p) with the
Grassmann parities ε(H0) = 0 ; ε(Gα) = εα

The first class for the constraints means, in the Dirac ter-
minology, that they satisfy the relations

[Gα, Gβ] = fγαβGγ ; [H0, Gα] = V βα Gβ (2)

where [ , ] means the Poisson bracket with respect the vari-
ables (q,p). The existence of the constraints determines
some relations between the canonical variables, such that
they will be not independent. In order to built up a coherent
phase-space for the system under consideration we shall ap-
ply the BRST technique and we shall add to the initial coor-
dinates new sets of variables, without physical significance,
called ghost-variables. One obtainan extended phase space
and it can be organized as a differential complex. This task
is accomplished by constructionof the Koszul-Tate complex
and its acyclic differential δK .The structure of this complex
is basically determined by the constraints and the relations
satisfied by them [4]. We shall use hear a strategy similar
with those used in [5] for the construction of a sp(2) BRST
symmetry. As in [3] we shall be interested in the construc-
tion of a sp(3) symmetry, and from this reason we shall tre-
ble the constraints:

GA = {G(a)
α , a = 1, 2, 3;α= 1, ..., m} (3)

In addition we shall suppose that the new constraints are
in fact the old ones, that is:

G(1)
α = G(2)

α = G(3)
α ≡ Gα ;α = 1, ..., m (4)

For each constraint we shall attach a ghost-momenta
PA = P

(a)
α having opposite parity asGA and ghost number

−1.

ε(PA) = εA + 1 ; gh(PA) = −1 (5)

The Koszul-Tate differentials δK acts as a derivation on
the polynomials of P (a)

α and its defining properties are:

δKP
(a)
α = G(a)

α (6)



δK (q, p) = 0 (7)

δK (AB) = A(δKB) + (−1)εB (δKA)B (8)

The crucial property of δK is its acyclicity which means
nonexistence of the real cycles i.e. nonexistence of the solu-
tions of equation δKω = 0 which are not exact: ω 6= δK(η)
In order to assure this acyclicity we must introduce new mo-
menta to kill all non-exact closed forms. From equations
(??) and (??) one obtain:

δK (P
(1)
α − P

(2)
α ) = δK(P

(2)
α − P

(3)
α ) =

= δK (P
(3)
α − P

(1)
α ) = 0

These cocycles are killed if we introduce the new mo-
menta π(a)

α such that

εabcδKπ
(c)
α = P (a)

α − P (b)
α (9)

i.e.

δKπ
(1)
α = P

(2)
α − P (3)

α

δKπ
(2)
α = P

(3)
α − P

(1)
α

δKπ
(3)
α = P

(1)
α − P

(2)
α

(10)

Again from equations (??) one can obtain one nonexact
closed form

δK(π(1)
α + π(2)

α + π(3)
α ) = 0

which again must be killed by new momenta τα:

π(1)
α + π(2)

α + π(3)
α = δK ( τα) (11)

The remarkable point in these definitions is the fact that
the Koszul-Tate differential δK can be decomposed in three
parts

δK = δ1 + δ2 + δ3 (12)

with

δaP
(b)
α = δabGα; δaπ

(b)
α = εabcP

(c)
α

δaτα = π
(a)
α ; a, b, c= 1, 2, 3

(13)

It is easy to see that these new differentials fulfill the an-
ticommutation relations:

δaδb + δbδa = 0 ; a, b = 1, 2, 3 (14)

The canonical description impose to define for each mo-
mentum a canonical pair, conjugated with the momentum
in respect with a generalized Poisson bracket. So, one can
show [3] that for an irreducible gauge theory the whole spec-
trum of ghost and ghost-momenta will be:

QA = {qi, Qαa, λαa, ηα}
PA = {pi, Pαa, παa, τα}

(15)

The Grassmann parity of the variables will be given by:

ε(Gα) = ε(λα) = ε(πα) ≡ εα
ε(Qα) = ε(Pα) = ε(ηα) = ε(τα) ≡ εα + 1

(16)

For two arbitrary quantity, F and G, with the Grassmann par-
ities ε(F ) = εF and ε(G) = εG,we shall adopt for the gen-
eralized Poisson bracket the form:

[F,G] =
∂F

∂QA
∂G

∂PA
− (−)εF εG

∂G

∂QA
∂F

∂PA (17)

3 THE EXTENDED HAMILTONIAN

The electromagnetic field is described by the action

S [A] = −k

∫
d4xFαβF

αβ (18)

where k is a constant,A is the four dimensional potential of
the electromagnetic field, and Fαβ ≡ ∂αAβ − ∂βAα.

The components of the four momenta vector have the ex-
pressions:

Π0 = 0 ; Πk = Fk0 ; k = 1, 2, 3 (19)

The relation Π0 = 0 represents a primary constraint of the
theory and, looking for its validity at any moment of time,
we generate a secondary constraint:

0 = [H0 , Π0] = ∂kΠk (20)

This last relation is nothing else that the Gauss low. The
two above mentioned constraints are the unique constraints
appearing when the dynamical equations of the free electro-
magnetic field are written down. If the field is involved in
some special device, that is with a special geometry, the pe-
culiar feature of the field must be added as supplementary
geometrical constraints. Let us note by φ(m) these con-
straints. They have to be added to the previous ones and
will be put together in the canonical hamiltonian. One ob-
tains the so-called extended hamiltonian and it will be the
adequate hamiltonian to describe the studied field configu-
ration .

We start from the expression of the canonical hamilto-
nian:

H0 =

∫
d3x (

1

2
ΠkΠk +

1

4
FijF

ij −A0∂
iΠi)

The extended BRST hamiltonian for the electromagnetic
field will be constructed on the basis of the ghost spectrum
(15) in the form of a sum:

H = H0 +
∑
n≥1

H(n)

The effective expression is chosen so that the hamiltonian
has to satisfy the treble global symmetry:

saH = 0 ; a = 1, 2, 3

where the operators sa = δa+... are the BRST differentials.
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