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Abstract

Thegaugeinvarianceof the el ectromagneticfield, aswell as
the geometrical restrictionsimposed by constructionfor var-
ious accelerating devices, transform the field configuration
in a constrained system and require supplementary care in
the study of its dynamics. Using the BRST rules, we shall
construct a suitable phase space and an extended hamilto-
nian for such aspecia configuration of the electromagnetic
field.

1 INTRODUCTION

The process of accel eration of charged particlesimposesthe
use of variouselectromagnetic field configurations. For ex-
ample, in the method of plasmoids acceleration [1] charged
and neutral particles-plasmoids-are locdized in the nodes
of an electric field and another eectromagnetic field can
determine an accelerating motion of the plasmoids or can
produce forced oscillations of these structure, givingriseto
e.m. waves. The waves propagate and could accelerate on
its turn other charged particles. Between the possible con-
figurationsof the el ectromagnetic field used in order to ob-
tain such accel erating motion we notethecylindrical axially
symmetric fidld E (z, 7, ¢):

E, = Ey Jo(k,r)sink,z sin wt
E,. = *(Z—j)EoJl(krr) cos k,zsin wt (1)
By = (F&)EoJ1 (k1) cos kz sin wt

where J,, representsthe Bessel function of order n and k2 +
k? = k* = w?/c% Inthis case it has been demonstrate
that , under supplementary conditions, stable ellipsoidal and
thoroidal bunches may occur and the limitationsin the ac-
celerating gradient have been calculated [2].

From another point of view, to consider conditionsof the
type (1) issimilar with theintroduction for the el ectromag-
netic field of some geometrical constraints. Aseventhefree
electromagnetic field hasitsown dynamical congtraints, itis
clear that a coherent description of such configurationsim-
posethe using of the specific methods of the constrained dy-
namical systems. The presentation of one of these methods,
the BRST technique, is the main goal of our paper. In the
next section we shall construct the extended phase space for
an irreducible theory as the el ectromagnetism is. The con-
structionwill be achieved in the enlarged context of amulti-
ple BRST symmetry[3]. Inthelast section of the paper will
be obtai ned the extended hamiltonian of the el ectromagnetic

field that put together the dynamical constraints and the ge-
ometrical constraintsof thetype(1). Thisisthehamiltonian
that must be used in the description of the field configura-
tions used in the various accelerator devices.

2 |IRREDUCIBLE GAUGE THEORIES

We consider a dynamical system that in the initia phase
space with the canonica variables (¢¢, p;), i = 1,...,nis
described by the hamiltonian Hy (g, p) and the set of linearly
independent first-class constraints G, = G(g, p) withthe
Grassmann paritiese(Hp) = 0; €(Gqo) = €q

Thefirst classfor the constraints means, in the Dirac ter-
minology, that they satisfy the relations

[Gou Gﬁ] = (zﬁG’y ) [HO; Ga] = VaﬁGﬁ 2

where [, | means the Poisson bracket with respect the vari-
ables (g,p). The existence of the constraints determines
some relations between the canonical variables, such that
they will be not independent. In order to built up a coherent
phase-space for the system under consideration we shall ap-
ply the BRST technique and we shall add to theinitial coor-
dinates new sets of variables, without physical significance,
called ghost-variables. One obtainan extended phase space
and it can be organized as a differential complex. Thistask
isaccomplished by construction of the Koszul-Tate complex
and itsacyclic differential 0 5. The structure of thiscomplex
is basically determined by the constraints and the relations
satisfied by them [4]. We shall use hear a strategy similar
with those used in [5] for the construction of asp(2) BRST
symmetry. Asin [3] we shall be interested in the construc-
tion of a sp(3) symmetry, and from thisreason we shall tre-
ble the constraints:

Ga={G",a=1,2,3;a=1,...m} (3)

In addition we shall suppose that the new constraints are
in fact the old ones, that is:

G =cP=6¥=¢G, ;a=1,..m (4

For each constraint we shall attach a ghost-momenta
Py = Pc(ya) having opposite parity as G 4 and ghost number
—1.

€(Pa) =€ea+1; gh(Pa) = -1 ®)

The Koszul-Tate differentials § - acts as a derivation on
the polynomial s of Pc(ya) and its defining properties are:

S P =G (6)



5 (AB) = A6k B) + (~1)® (5 A)B  (8)

The crucia property of §x isitsacyclicity which means
nonexistence of thereal cyclesi.e. nonexistence of thesolu-
tionsof equation 0 xw = 0 whicharenot exact: w # dx (1)
In order to assure thisacyclicity we must introduce new mo-
menta to kill al non-exact closed forms. From equations
(??) and (??) one obtain:

5 (PV — PP) = 55 (PP — PPy =
=6 (P - PMy =0

These cocycles are killed if we introduce the new mo-
menta 7' such that

EabC(SKT('gC) _ Po(éa) o Po(zb) (9)

Sertl) = P — P
st = PP — piM (10)
Sicn?) = P — P

Again from equations (??) one can obtain one nonexact
closed form

Ox(nl) + 7 + 7)) =0
which again must be killed by new momenta 7, :

7D 4+ 7?4 7208 — 5 (1) (11)

The remarkable point in these definitionsis the fact that
the Koszul-Tate differential §x can be decomposed inthree
parts

S =06 +62+68° (12)

with

ap®) _ sab .sa.(0) _ _abep(c)
0Py’ =46 (Cz)a,(?ﬂa = €%¢P, (13)
0%y =7e ;a,b,c=1,2,3
Itiseasy to see that these new differentialsfulfill the an-
ticommutation rel ations:
§96° + 6% =0;a,b=1,2,3 (14)
The canonical descriptionimpose to define for each mo-
mentum a canonical pair, conjugated with the momentum
in respect with a generalized Poisson bracket. So, one can
show [3] that for anirreduciblegaugetheory thewhol e spec-
trum of ghost and ghost-momentawill be:

QA = {qi7 Qaa, )\aa, 77a}

PA = {pi; Paayﬂ-aa;Ta} (15)

The Grassmann parity of the variableswill be given by:

€(Go) = €(\¥) = €(q) = €a

Q%) =e(Fa) = () =e(ra) = ca +1 4

For two arbitrary quantity, F and G, with the Grassmann par-
itiese(F) = ep and ¢(G) = e, we shall adopt for the gen-
eralized Poisson bracket the form:

OF 0G

3G 9G OF
9Q" 0P,

[F7G]: 3@"‘@

()
(17)
3 THE EXTENDED HAMILTONIAN

The electromagnetic field is described by the action

/ dixF,sFoP

where k isaconstant, A isthefour dimensional potential of
the electromagnetic field, and F.g3 = 0, Ag — 0gAa.

The components of the four momenta vector have the ex-
pressions:

S[A] =~ (18)

o =0; g = Fro ;k=1,2,3 (19)

TherelationIl, = 0representsaprimary constraint of the
theory and, looking for itsvalidity at any moment of time,
we generate a secondary constraint:

0=[Hy , IIp) = OFII, (20)

Thislast relation is nothing el se that the Gauss low. The
two above mentioned constraints are the unique constraints
appearing when the dynamical equations of thefree electro-
magnetic field are written down. If thefield isinvolvedin
some specia device, that iswith a special geometry, the pe-
culiar feature of the field must be added as supplementary
geometrical constraints. Let us note by ¢(™) these con-
gtraints. They have to be added to the previous ones and
will be put together in the canonical hamiltonian. One ob-
tainsthe so-called extended hamiltonian and it will be the
adequate hamiltonian to describe the studied field configu-
ration .

We start from the expression of the canonical hamilto-
nian:

1 L |
H, = /d3x (ST + P FY — Ao0'TE)

The extended BRST hamiltonian for the el ectromagnetic
field will be constructed on the basis of the ghost spectrum
(15) in the form of asum:

H=Hy+» H™
n>1
The effective expression is chosen so that the hamiltonian
has to satisfy the treble global symmetry:
sH=0;a=1,2,3
wheretheoperatorss® = 6% +-... arethe BRST differentials.
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