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Abstract
In a final-focus system, space-charge forces can be sig-
nificant even for very high beam energies. The reason is
the inherent large chromaticity of such a system, which
needs to be compensated to a high precision. The longitu-
dinal space-charge force causes an energy variation along
the bunch, which depends on beam size, beam-pipe ra-
dius, and bunch population. Since this energy variation
is location-dependent, it may affect the chromatic correc-
tion and, thereby, increase the IP spot size. The space-
charge force then gives rise to a limit on bunch intensity
beyond which the resulting spot-size increase will degrade
the final-focus performance. In this paper, the effect of lon-
gitudinal space charge is evaluated and intensity limits are
derived for three existing or proposed final foci.

1 INTRODUCTION

The purpose of a final-focus system for a linear collider is
to demagnify a high-energetic electron (or positron) beam
to a minuscule vertical spot size at the interaction point
(IP). The last focusing before the IP is achieved with two or
three strong quadrupoles, a so-called final doublet or triplet.
At these quadrupoles the values of the beta functions are
huge, up to tens or hundreds of kilometers, and, as a re-
sult, the system is highly chromatic. The chromaticity is
conventionally canceled by upstream sextupole magnets at
locations with nonzero dispersion. In order to achieve the
desired small spot sizes at the IP, the chromaticity needs to
be compensated very accurately for all particles in a bunch.
Small changes to the energy distribution inside a bunch
which occur between sextupoles and final quadrupoles may
impair the chromatic correction, and may lead to an in-
crease of the IP spot size. More specifically, the chromatic
contribution to the vertical spot size at the IP can be written

��y

�y
= � ��rms (1)

where the dimensionless number� characterizes the (verti-
cal) chromaticity of the final transformer, and��rms de-
notes the rms difference of the particle-energies at sex-
tupoles and final quadrupoles, divided by the average beam
energyEb. The term��y of Eq. (1) has to be added
in quadrature to the design spot size. As an example,
� � 6000 in the SLC final focus,� � 26 000 for the FFTB,
and� � 32 000 for the NLC, and, thus, the rms energy dif-
ference between sextupoles and final quadrupoles at which
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the total spot size increases by 2% is

��rms �

8<
:

3� 10�5 (SLC)
8� 10�6 (FFTB)
6� 10�6 (NLC)

(2)

These are very small numbers—orders of magnitude
smaller than the beam energy spread. They reflect the sen-
sitivity of the spot size to energy variations inside a bunch
which are generated in the final focus itself. A harmful en-
ergy variation��rms can be caused by forces so small that
they might completely be ignored, in view of the high beam
energy, if they would not affect the chromatic correction. In
this paper, we consider one such potentially harmful force,
the longitudinal space charge, and evaluate its importance
for the SLC, FFTB and NLC final-focus systems. The lon-
gitudinal space-charge force also changes the average beam
energy at the IP, which could be important for the correct
analysis of high-precision physics experiments. Finally, we
note that the wake-field induced by beam-pipe discontinu-
ities results in an additional energy variation, which may
either counteract or enhance the space-charge effect and
which is not included in the following analysis.

2 LONGITUDINAL SPACE CHARGE

The space-charge force causes both an energy shift and an
energy variation along the bunch, which depend on beam
size, beam-pipe radius, and bunch population. We will
neglect the contribution to the space-charge force which
arises from the nonuniformity of the longitudinal distribu-
tion, since it is suppressed by1=2, where denotes the
relativistic Lorentz factor. As discussed in the introduction,
the space-charge induced energy variation changes with lo-
cation and, thus, may affect the chromatic correction. Be-
cause it is intensity-dependent, a limit on the bunch inten-
sity exists beyond which the resulting spot-size increase
will degrade the final-focus performance. An estimate of
the critical intensity is obtained by comparing typical val-
ues for��rms with Eq. (2). To this end, we consider an ul-
trarelativistic electron (or positron) bunch traversing at the
center of a perfectly conducting circular beam pipe, whose
electrostatic potential is assumed to be zero. If the trans-
verse beam distribution is Gaussian, the potential energy
�(x; y; z) of a particle on the beam axis (x,y=0) is

e�(0; 0; z) =
e�(z)
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where C � 0:577 : : : denotes Euler's constant,e the
electron charge,R is the beam-pipe radius,�x and �y



are the horizontal and vertical rms beam sizes, respec-
tively, and � is the charge line density at longitudi-
nal positionz within the bunch. Assuming the longi-
tudinal distribution is also Gaussian, we have�(z) =

Ne=(
p
2��z) exp(�z2=(2�2z)), whereN is the number of

particles per bunch. For the NLC, we find�(0) � 5�10�6
C/m, for the FFTB�(0) � 1� 10�6 C/m, and for the SLC
�(0) � 4 � 10�6 C/m. The change of the kinetic energy
between two locations (1 and 2) for an on-axis particle at
positionz is given by Eq. (3). Since a change of the aver-
age bunch energy is easily corrected by adjusting the mag-
net strengths, it is the spread of energy change, i.e. the rms
change, which is harmful. Both energy changes can be es-
timated from thez-dependence of�(z; 0),�
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where�sum � �x + �y denotes the sum of the two trans-
verse rms sizes, andre the classical electron radius. We
have used�rms � (1=

p
3 � 1=2)

1

2 � �(0) and�ave �
1=
p
2 � �(0). Note that, in Eq. (4), we have ignored the

dependence of the potential on the transverse position.
For the SLC, we have�sum � 1:71 mm inside Q2, the

center magnet of the final triplet, and�sum � 850 �m at
the Y-sextupoles. The beam pipe radius in sextupoles and
final quadrupoles is about the same. In the FFTB the beam
size at the Y-sextupoles,�sum � 650 �m, almost equals
that at the center of the final quadrupole�sum � 570 �m.
Finally, for the 500-GeV c.m.-energy NLC design, the
beam sizes are�sum � 337 �m at the Y-sextupoles and
�sum � 250 �m inside the first quadrupole Q1. Assum-
ing typical operating or design currents (4�1010, 1010 and
0:65 � 1010 particles per bunch, respectively) and bunch
lengths of 700�m, 600�m, and 100�m, the rms energy
difference between sextupoles and final quadrupoles is

��rms �

8<
:

2:5� 10�7 (SLC)
1:4� 10�8 (FFTB)
2:5� 10�8 (NLC)

(5)

Using Eq. (2), the critical current for a 2% spot size in-
crease is estimated to be more than an order of magnitude
larger than the present design or operating current. This
is a crude estimate, since the beam sizes inside the final
quadrupoles change rapidly, the chromaticity of other final-
focus magnets has been neglected, and we have ignored the
dependence of the potential on the transverse coordinates.

We can also estimate the change of the beam energy at
the IP. In the SLC, the IP beam size is2 �m� 500 nm; the
NLC is designed for a spot size of300 nm� 4.5 nm. These
numbers imply a change of the average beam energy at the
IP, relative to that inside the last quadrupoles, by

�E �

(
�280 keV ^

= �6:0� 10�6 (SLC)

�350 keV ^

= �1:4� 10�6 (NLC)
(6)

which is more than hundred times smaller than the rms en-
ergy spread of the beam and most likely insignificant.

To study the space-charge induced spot-size increase
and the IP energy change in more detail, and to improve

the above estimates, we have modified the multi-particle
tracking code MAD [1] so as to include the energy variation
due to space charge. In the simulation, the space-charge
force is calculated solely from the change of the transverse
beam dimensions, since, for the systems considered, the
beam-pipe aperture variation is not very important.

Apart from an arbitrary additive constant, the elec-
trostatic potential of a Gaussian charge distribution, with
transverse rms sizes�x and�y, reads [2]

�(x; y; z) =
�(z)
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Assuming�x and�y are slowly varying with locations,
the potential�(x; y; z; s) satisfies the differential equation
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which shows that the longitudinal space-charge forceFs
(= �e@�=@s) can be expressed in terms of the derivative
of the transverse forcesFx;y as follows:
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In the simulation, a multi-particle distribution is propagated
step by step through the magnets and drift spaces of the
final-focus system. After each step, of length�s, the rel-
ative energy deviation� of a particle with coordinatesx, y
andz is changed by an amount�� which, for a flat beam
(�x � �y), reads

��(x; y; z) = �s �
�(z)re
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where�x and�y denote the rms beam sizes at locations,
andF(x; y) is defined in terms of the complex error func-
tionW as

F(x; y) =W
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The functionF is familiar from the Bassetti-Erskine rep-
resentation for the transverse fields of a Gaussian charge
distribution [3]. If�y � �x, the coordinatesx andy in Eq.
(10) need to be interchanged. Finally, to avoid singulari-
ties, if �x � �y , the electrostatic force of a round beam is
used forFx;y in Eq. (9). It is notable that for small ampli-

tudes (x=�x <� 1, y=�y <� 1) the energy change for both

flat and round beams simplifies to
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which is independent of the transverse position.
Typical tracking results including space charge are pre-

sented in Figs. 1–3, and in Table 1. Figures 1 and 2 display
the variation of the average bunch energy along the NLC
and SLC final foci, respectively. The magnitude of the en-
ergy variation is consistent with our earlier estimates. It
seems fortuitous that, in both systems, the energy differ-
ence between sextupoles and the last quadrupoles is much
smaller than the ' typical' energy variation. Figure 3 de-
picts the energy variation in an odd-dispersion final focus,
designed by Oide [4], for roughly the same IP beam pa-
rameters as in Fig. 1. In this system only the second Y-
sextupole is used for chromatic correction. This particular
odd-dispersion design is slightly more sensitive to space
charge than the design of Fig. 1, although the effect is still
small.
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Figure 1:Variation of average bunch energy due to the longitudi-
nal space-charge force in a 500 GeV c.m.-energy NLC final focus
system, for a bunch length of100 �m and6:5� 10

9 particles per
bunch.
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Figure 2:Variation of average bunch energy due to longitudinal
space-charge force in the SLC final focus system, for a bunch
length of 700�m and4� 10

10 particles per bunch.

Table 1 lists exemplary spot-size increases obtained by
multi-particle tracking. The spot sizes change sensibly for
bunch populations larger than a few times1011 particles.
As expected from Eqs. (1) and (4), the relative spot-size
increase (to be added in quadrature) is proportional to the
beam intensity. In the simulation, no attempt was made
to correct for the change of average beam energy. Thus,
the real intensity limit will be about two times higher than
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Figure 3:Variation of average bunch energy due to longitudinal
space-charge force in a 500-GeV c.m.-energy odd-dispersionfinal
focus system. Beam parameters are the same as in Fig. 1.

that predicted by Table 1, if we assume that the magnet
strengths will be adapted to the actual local beam energy.

N ��y=�y0
SLC FFTB NLC odd-� NLC

1� 10
11 5.1% 0.3% 8.4 % 15.7%

2� 10
11 9.8% 0.6% 24.6 % 30.9%

4� 10
11 17.4% 1.3% 55.5 % 61.2%

Table 1:Simulated relative increase of the vertical spot size due
to longitudinal space charge, for different numbers of particles per
bunchN . The design spot sizes�y0 are 370 nm, 44 nm and 4.5
nm, for SLC, FFTB and NLC, respectively, to which the contri-
bution��y has to be added in quadrature.

3 CONCLUSION

Longitudinal space charge in the final-focus system places
a limit on the achievable luminosity of a linear collider. For
the NLC, FFTB and SLC final foci, space-charge forces
were found to be significant for bunch populations an order
of magnitude larger than their design or operating value.
For a different final-focus optics the critical intensity could
be considerably lower and, therefore, the space-charge ef-
fect deserves some attention during the design phase. In
addition to the spot-size increase, the space-charge force
also causes a change of the average beam energy at the IP,
which, although rather small, might prove important in the
analysis of high-precision experiments.
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