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Abstract

Genera formulaeare given for computing the norma mode
incoherent and coherent Lasl ett coefficients for beam liners
surrounded by a (coaxia) magnetic yoke, in terms of com-
plex potentias. Applicationsto the circular and square ge-
ometries are discussed.

1 INTRODUCTION

Inaprevious paper one of the Authors (S.P) has shown that
vertical and radia betatron oscillationsare coupled in gen-
eral, sothat Ladlett coefficients[1] form anon-diagonal ten-
sor. It is thus possible to compare different pipe geome-
tries in terms of Ladlett coefficients in a meaningful and
non-ambiguousway only after introducing betatron normal
modes [2]. In thiscommunication the normal mode L asl ett
coefficient computationa framework formulated in [2] is
extended to the more genera case where the beam pipeis
encircled by a magnetic yoke.

2 THEORY

The transverse motion of a particle in a beam is driven by
space-charge, image and guiding forces:

The space chargeforce f75P~°h~) , related to the beam charge
distribution[3], isthe same asin free space, and will be ne-
glected here, for smplicity. The image force ﬂim~), isdue
to the conducting and magnetic boundaries, and iscomputed
as if the beam were a line charge through the (transverse)
center of charge p;. The equilibrium condition is defined
by!:

£ ompy + ™)==, = 0. )
For small displacements, thereof two regimes are possible:

1) Po = Peq., P7 Peq., iNCONErent, single particle regime:
f: (F— Peq.) - vﬁ[f_(im~)_|_f'(g~f~)] , ©)
il) o= Pb # feq., CONErent, whole beam regime:

—
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*On leave of absence from Dip. Fis. Teor. e SM.SA., Univ. of
Sdlerno, ITA.

1 The equilibrium position F.4. coincides with the chamber center of
symmetry only in the absence of guiding fields.

where V3, V3, is the gradient taken w.r.t. the suffix coor-
dinate, and all derivativesaretaken at 5= pp = peq. .

For both cases, the linearized Lorentz force equation
reads:

+ QW20 - § = o, (5)

dr?
whereé = P—Peq., T = 8/c, 2 iSthecirculationfrequency,
vo the unperturbed tune, 1202 = (movo) 18, £197) =
(movo) =18, £$9) and T isa 2nd-rank tensor?:
2

[40]

LTl

U=1+ 2 Ay, (6)

where the tune-shift tensor Av can be further factored as;

NRTO -

Ay = ——— 0
wvoB3vo L2

(7)
Here thefirst factor depends only on the gross machine fea-
tures, (IV isthetotal # of particlesin the beam, R thering
radius, ro the classical particleradius, L the transverse di-
mension of the chamber) whilethe Lasl ett tensor:
Vﬁf_(im') .. _ incoh,;
P=Pbo=Peq
= q )
(V5 + Vg)ftm) ‘

.. _ ,coh,
P=Po=Pegq.

depends only on the transverse pipe geometry A =
Ng/2xR being the beam linear charge density. Intro-
ducing the betatron norma modes diagonalizes the Ladl ett
tensor, yielding the normal-mode Lasl ett coefficients [2]:

€1,2 =

) 1/2
1 —; €22 + l<€11 ;622> +612€21l .9
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For coasting or relativistic bunched beams running par-
ale tothe z-axis, fti"“) can be computed in terms of elec-
tric and magnetic image potentials (™) and AGm) —
Alim) g asfollows:

Image Force Potential

g ) = 9, [0 4 goaC™)], (10)

2Here we assume for simplicity no H-V betatron coupling, in the ab-
sence of space-charge and image effects, aswell as H-V symmetry.



Where ¢, A are found by solving:
1 - o
=2 { AS(p— pb)- (12)

Vf’{ i Bo

In general bothimage potentialscontain static (=) aswell as
dynamic (~) terms. The boundary conditionsto beimposed
on the static and dynamic components of ¢ and A are dif-
ferent. For the static components, the boundary conditions
are (continuity of thetangentia fiel ds across the conducting
liner and magnetic yoke surfaces S, and Sy, respectively):

¢=|5, = const.,

94 (12)

on |g

L 0A

=p
Y- " on Sy+
For aliner made of good conductor of finite thickness, the
high frequency spectral componentsof the (dynamic) poten-
tialswill not penetrate beyond the liner’swall, and the b.c.
will be:

¢~|g, = const., A.|g, = const., (13)
Viz,Ax &, =fh-b.=0as,, respectively, whence, in
view of (11):

An = Popn = Po[9(0,5s) — 6=(P,Peq )] (14)

The spectral components of the magnetic field below some
critical frequency will penetrate beyond the liner’s wall,
and for these penetrating AC components, the b.c. will
be the same as for the static term, viz. (12)3. Inthein-
coherent regime, the (transverse) beam center of charge is
fixed &t o = peq., SO thet both ¢ and A are static. In the
coherent regime the beam undergoes coherent (rigid, col-
lective) transverse oscillations, and the fields contain both
gtatic and dynamic terms. It is seen from (14) that in the
non-penetrating (high frequency) regime theimage forceis
thesame asin theincoherent regimeinthelimitof o — 1.

2.2 Auxiliary Complex Potentials

The force can be conveniently derived from acomplex po-
tential, where, in general [2]:

™) — BoAU™) = 2\ Re U(z, %, 2;),  (15)
where z = (z + iy)/ L isthe (scaled) field-point, and z, =
(z» + 2y )/ L the (scaled) source-point, L being a problem-
dependent scaling length (e.g., the pipe size). Let further:

¥ = U(z)+ V(E), (16)

31n order to decide between the penetrating and non penetrating field
regime at a given frequency f, we should comparethe liner’s wall thick-
nessto the skin depth at that frequency § = (7 f pwow ) ~1/2, 0 and oy
being the electrical conductivity and magnetic permeability of the liner’'s
wall. A possiblerefinement would beto consider partial penetration of the
fields through the pipe walls [4], [5].

where dots mean derivationw.r.t. theargument. Then, from
eg.s (9), the following formul ae are readily established [2]:

1

i3 = 42 M (17)

for the incoherent regime;
eegP) :%{—Ref/i U\if + ff‘z—fm?f/] 1/2} (18)
for the (low frequency) coherent penetrating regime, and:
oo P) %{—(1—5§)Re?e,¢

2

. . . q1/2
Um(l—ﬁgwel. (1—ﬁ3)1mzvel] } (19

for the (high frequency) coherent non-penetrating regime,
where U,;., V,;. denote the eectric partsof 7, V, and all
derivatives are evaluated at z = Z = Z.,.. Equations
(17) to (19) are not restricted to any specia geometry, and
thusprovideagenera framework for computing the normal
mode (incoherent as well as coherent) Ladett coefficients
for beam liners surrounded by a (coaxial) magnetic yoke.

3 RESULTS

The above formalism has been applied to avariety of cases
of practical interest, eg. for the LHC. As an example,
theincoherent and coherent Laslett coefficients for a circu-
lar pipein acoaxia magneticyokeareshowninFig.s1to4.

This work has been sponsored in part by INFN through
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Figure 1: Incoherent Ladlett Coefficient for circular liner
withinacircular bore magnetic yoke (u,=5000); p = scaled
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Figure 2: Coherent Ladett Coefficient, norma mode #1,
for circular liner within a circular bore magnetic yoke
(1,=5000); p = scaled distance from axis. R = scaled yoke

radius
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Figure 3: Coherent Ladett Coefficient, norma mode #2,
for circular liner within a circular bore magnetic yoke
(1»,=5000); p = scaled distance from axis. R = scaled yoke
radius
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Figure 4: Coherent Ladett Coefficient, non-penetrating
modes, for circular liner within a circular bore magnetic
yoke (p.=5000); p = scaled distance from axis. R = scaled
yoke radius



