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Abstract

At present, mathematical methods of modeling and opti-
mization are extensively used in many fields of science and
technology. Development of specialized software for var-
ious applications becomes of ever increasing importance.
A special class of the problems attracting attention of nu-
merous researches is represented by the problems associ-
ated with the beam dynamics formation in accelerators. The
paper deals with optimization problems of charged parti-
cle beam in Linac. The theory of the optimal beam dynam-
ics formation in both accelerating and focusing structures is
suggested. Different mathematical control models describ-
ing beam dynamics are presented. Especially we consider
the problems connected with taking into account of charged
particles interaction. New classes of functionals are intro-
duced for the estimation of beam dynamics. The optimiza-
tion methods are developed for the presented functionals.
They are used for the solving of various beam dynamics
problems in different accelerating and focusing structures.1

1 CONTROL PROBLEM

The problem of beam control of interacting particles, which
dynamics is described by integro-differential equations, is
considered. Let us assume that evolution of particle beam
is described by equations [1, 2]

dx

dt
= f(t, x, u), (1)

∂ρ

∂t
+
∂ρ

∂x
f(t, x, u) + ρdivxf(t, x, u) = 0 (2)

with initial conditions

x(0) = x0 ∈M0, ρ(0, x) = ρ0(x), (3)

where

f = f1(t, x, u) +

∫
Mt,u

f2(t, x, yt)ρ(t, yt) dyt.

Here t is is the time; x is n-vector of phase coordinates; u =
u(t) is r-dimensional control vector–function; ρ = ρ(t, x)
is the particle distribution density in the phase space; f1 is
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n-dimensional vector–function determined by external elec-
tromagnetic fields; f2 is n-dimensional vector–function as-
sociated with the particle interactions; the set Mt,u is the
cross–section of the trajectory set. It is obtained by time
shift of the initial set M0 through solutions of equation (1)
with given control u = u(t). The set M0 is a given set in
the phase space, which describes the set of initial states for a
charged particle beam at the initial time moment. The func-
tion ρ0(x) is a given function describing the particle distri-
bution density at the moment t = 0.

The equations (1) – (2) can be considered as Vlasov equa-
tions. We meet with these equations if interaction between
particles, for example the Coulomb repulsion, is taken into
account.

Let us introduce a functional

I(u) =

∫ T

0

∫
Mt,u

ϕ(t, xt, ρ(t, xt))dxtdt+

∫
MT,u

g(xT , ρ(T, xT ))dxT (4)

characterizing the dynamics of the process. Here ϕ and g
are given non-negative functions, T is fixed.

Consider the minimization problem of functional (4).
Analizing various systems which are designed for acceler-
ation, focusing and transporting of charged particle beams,
it should be noticed that electrical and magnetic fields can
be treated in a certain structural and parametric form. Thus
certain components and parameters of electromagnetic
fields and geometric systems of accelerating or focusing
can be taken as control variables.

2 OPTIMIZATION METHODS

The directed methods of the optimal structures search are
presented in [1, 2]. These methods are based on the follow-
ing form of functional variation

δI = −

∫ T

0

∫
Mt,u

(ψ∗(t, xt)∆uf1(t, xt, u) +

λ(t, xt)∆udivxf1(t, xt, u))dxtdt, (5)

where

∆uf1 = f1(t, xt, u(t) + ∆(t))− f1(t, xt, u(t)). (6)



Here and further ∗ denotes transposition. The auxiliary
functions ψ and λ satisfy the following equations

dψ

dt
= −

(
∂f(t, x(t), u(t))

∂x
+

Edivxf(t, x(t), u(t))

)∗
ψ−

λ

(
∂divxf(t, x(t), u(t))

∂x

)∗
+

(
∂ϕ(t, x(t), ρ(t, x(t)))

∂x

)∗
− ρ(t, x(t))×

∫
Mt,u

{(
∂f2(t, yt, x(t))

∂x

)∗
ψ(t, yt)+

λ(t, yt)

(
∂divxf2(t, yt, x(t))

∂x

)∗}
dyt, (7)

dλ

dt
= −λdivxf(t, x(t), u(t))+

ϕ(t, x(t), ρ(t, x(t)))−

∂ϕ(t, x(t), ρ(t, x(t)))

∂ρ
ρ(t, x(t)) (8)

along the trajectories of the system (1)–(2) with a given con-
trol u = u(t) and terminal conditions

ψ∗(T, x(T )) = −
∂g(x(T ), ρ(T, x(T )))

∂x
, (9)

λ(T, x(T )) = −g(x(T ), ρ(T, x(T ))) +

∂g(x(T ), ρ(T, x(T )))

∂ρ
ρ(T, x(T )). (10)

Here

divxf =
n∑
i=1

∂f

∂xi
.

In the case when ϕ = −∂ϕρ ρ ≡ 0 and g − ∂g
ρ ρ ≡ 0 we

have

δI = −

∫ T

0

∫
Mt,u

(ψ∗(t, xt)∆uf1(t, xt, u)dxtdt, (11)

where ψ(t, x(t)) satisfies equation

dψ(t, x(t))

dt
= −

(
∂f(t, x(t), u(t))

∂x
+

Edivxf(t, x(t), u(t)))
∗
ψ(t, x(t)) +(

∂ϕ(t, x(t), ρ(t, x(t)))

∂x

)∗
− ρ(t, x(t))×

∫
Mt,u

(
∂f2(t, yt, x(t))

∂x

)∗
ψ(t, yt)dyt. (12)

In the case u = u(t, x) we can obtain analogous formulas.
As it was mentioned above formulas (5), (11) for the

functional variation allow us to constract various methods
of searching for optimal control. If the control u is defined
by some set parameters, then we can obtain formula for gra-
dient of the functional (4).

3 MODELING OF BEAM DYNAMICS

Consider several control problems related to the formation
of required accelerating and bunching regimes for charged
particle beams. First describe the problem of particles cap-
ture in the accelerating mode. Consider, for definitness,
the particle dynamics in the field of traveling–wave. With-
out taking into account the interaction between the particles
the equations of the longitudinal motion have the following
form

dγ

dξ
= −α(ξ) sinϕ,

dϕ

dξ
= 2π

(
1

βph(ξ)
−

1√
γ2 − 1

)
, (13)

where γ = W/W0 is the reduced particle energy; ϕ is the
particle phase; ξ is the reduced distance; α(ξ), βph(ξ) are
the reduced parameters of the accelerating wave.

Let M0 be the set of initial energies and phases (γ0, ϕ0)
for the system (13). Assume that ϕ ∈ [−π, π]. Denote
by γ(ξ, γ0, ϕ0), ϕ(ξ, γ0, ϕ0) the solution of the system (13)
with the initial data (γ0, ϕ0). Then the capture of the parti-
cles with the initial values from M0 into the acceleration
mode means that for arbitrary (γ0, ϕ0) ∈ M0 the phase
ϕ(ξ, γ0, ϕ0) ∈ [−π, π] for all ξ ∈ [0, L]. Here L is the
reduced length of the accelerator. Call M0 the set of cap-
ture into acceleration mode. Let the set M0 be such that
any subset is the set of capture into acceleration mode and
any set includingM0 and not identical to it does not fit the
requirement. CallM0 the maximal set of capture into accel-
eration mode. Its area is called the longitudinal acceptance
of accelerating structure.

Assume

I1(α, βph) =

∫ L

0

∫
Mξ,α,βph

Φ(ξ, γξ, ϕξ)dγξdϕξdξ +

∫
ML,α,βph

G(γL, ϕL)dγLdϕL. (14)



The functions α(ξ) and βph(ξ) are used as control. Let us
introduce the function

g(ω, ω1, ω2) =

 (ω − ω1)2, ω < ω1;
0, ω ∈ [ω1, ω2];

(ω − ω2)2, ω > ω2.
(15)

Suppose

Φ(ξ, γ, ϕ) = C1g(ϕ,−π, π),

G(γ, ϕ) = C2g(γ, γmin , γmax), (16)

where C1 and C2 are the weight constants.
Functional (14) with the functions Φ and G defined

by (16) are non–negative. They are equal to zero in the
case when M0 is the set of capture in acceleration mode
and the output energies of particles are within the interval
[γmin, γmax]. In this case ∆ = γmax − γmin defines the
width of the particle energy spectrum.

Thus minimizing the functional (14) one can provide the
required particle capture into the acceleration mode with
prescribed accelerating rate. Varying the values γmin and
γmax one can change acceleration rate and energy spectrum
of the output beam. Extending the set M0 one can solve
longitudinal acceptance maximization problem.

To analize a longitudinal motion with space charge, we
consider the model of large–scale particles. We model the
beam by assembly of thick disks of radiusR and 2d in thick-
ness. Let us write out equations for the traveling wave field

dξ

dτ
=

p√
1 + p2

, (17)

dp

dτ
= −α(ξ) sinϕ+∫

Mτ,α,βph

f2(ξ, p, ξ′τ , p
′
τ)ρ(τ, ξ′τ , p

′
τ)dξ′τdp

′
τ . (18)

Here p = γβ is the reduced impulse; τ = ct/λ;

ϕ(τ) = 2π

∫ τ

0

[
β(τ)

βph(ξ(τ))
− 1

]
dτ + ϕ0, (19)

f2(ξ, p, ξ′τ , p
′
τ) =

e

m0c2
λQa2

2ε0πR2d2
×

∞∑
m=1

{
J2

1 (λmR/a)

λ4
mJ

2
1 (λm)

[2fm(
√

1 + p′τ
2(ξ − ξ′τ )λ)−

fm(

√
1 + p′τ

2(ξ − ξ′τ )λ− 2d)−

fm(
√

1 + p′τ
2(ξ − ξ′τ)λ + 2d)]

}
,

fm(y) = sign(y)(1 − e−λm|y|/a);

a is the channel aperture; Q is total beam charge; λ is the
wave length in the free space; e is the charge of particle;
m0 is the rest mass of particle; c is the speed of light; ε0 is
the electric constant; J1 is the Bessel function of the first
order; λm are the roots of zero order Bessel function, i.e.
J0(λm) = 0.

Here we assumed that∫
M0

ρ(ξ0, p0)dξ0dp0 = 1.

When integrating (17), (18) for computation of the phase ϕ
it may be wise to consider the differential equation

dϕ

dτ
= 2π

(
p√

1 + p2

1

βph(ξ)
− 1

)

instead of equality (19) and then integrate it together with
the preceding equations.

By analogy with functional (14) we may introduce the
corresponding functional in this case, too.

A number of different problems of beam physics can be
solved with the help of mentioned above or analogous func-
tionals. Some applications of this approach are considered
in [1− 4].

4 CONCLUSION

Problems of beam dynamics optimizationare stated as prob-
lems of trajectory bundle control. An extensive class of dy-
namic systems and problems under study enables solutions
of a variety of accelerator–theory problems, related to the
forming of optimal beam dynamics in the accelerating and
focusing structures.
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