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Abstract

The possibility to generate and control coherent states for
a charged particle bunch in a circular accelerating ma-
chine in the presence of radiation damping and quantum
excitation is investigated in the framework of the Thermal
Wave Model. It is proven that in correspondence of arbi-
trary time-variations of a radio-frequency (RF) strength,
a Schrödinger-like equation predicts the final equilibrium
state, toward which the system spontaneously goes, where
a sort of mesoscopical coherence is reached. This state cor-
responds to an example of the Glauber-Klauder-Sudarshan
(GKS) coherent states widely considered in quantum op-
tics and optical fibers. In addition, it is shown that for
suitable time-varying RF strength, coherent states are pos-
sible in each time (locally-controlled coherence) during
the evolution toward the above asymptotic equilibrium,
and the possibility that allow for carrying these analytical
predictions in particle accelerators out is discussed.

1 INTRODUCTION

It has been recently pointed out [1, 2] that the longitudinal
dynamics of an electron (positron) bunch in a linearized
(harmonic-like) radio frequency (RF) potential well in the
presence of radiation damping (RD) and quantum exci-
tation (QE) is governed by a Schrödinger-like equation
for a complex function, the beam wave function (BWF),
whose squared modulus is proportional to the longitudi-
nal density profile [1, 2]. In this quantum-like equation,
Planck’s constant is replaced with an arbitrary function
of time. It has been shown that the physical meaning of
this function is the longitudinal beam emittance and its
time-variation accounts for both the dissipation due to RD
and the quantum fluctuation given by QE [3]-[5]. This
way, the above equation dynamically describes the bunch
as a non-conservative system, and in the asymptotic limit it
becomes a Schrödinger-like equation where the emittance
is stabilized on its asymptotic minimum value (emittance
damping). It has been shown that this model correctly
recovers the results of the conventional description of par-
ticle accelerators. In addition, it has been observed that the
above final equilibrium state of the system, toward which
the system spontaneously goes, represents a sort of macro-
scopical coherence, where the quantum-like uncertainty
relation is minimized [2]. It is very easy to see that, in the
quantum-like language of the TWM, this state corresponds
to an example of the Glauber-Klauder-Sudarshan (GKS)

coherent states [6] widely considered in quantum optics [7],
optical fibers [8], and stochastic mechanics [9]. Recently,
the existence and the methods for generating these states
has been also investigated for the transverse dynamics of
charged particle beam in the accelerating machines in the
TWM framework [10]. The basic hypothesis used in Ref.s
[2] and [10] to generate GKS coherent states in particle
accelerators was to consider constant the strengthK of the
linearized longitudinal or transverse potential well.

In this paper, we want to investigate on the possibility to
generate and control coherent states for a charged particle
bunch in a circular accelerating machine in the presence of
RD and QE when the above strength is a time-dependent
function. This is done on the basis of both the previous
TWM approach given in [2] and the stochastic-mechanical
approach given in [11]. The following steps are in order.
First, we formulate our problem by specifying the assump-
tions taken into account and giving the basic equations of
our problem. Then, we present the analytical results of the
formulated problem, and show that, in correspondence of
suitable time-variations of K, coherent states are analyti-
cally possible in each time (locally-controlled coherence)
during the evolution toward the asymptotic equilibrium. In
the quantum-like framework this final state plays the role of
the ground state (the simplest GKS coherent state). Subse-
quently, we discuss on the possibility that allow us for carry-
ing these analytical predictions out . Finally, some remarks
and the conclusions are presented.

2 FORMULATION OF THE PROBLEM

We deal here with a relativistic electron (positron) bunch
with nominal energyE0 (synchronous particle energy) trav-
elling in a circular accelerating machine of radiusR. Let us
consider that the bunch, during its periodic motion of nom-
inal angular frequency !0, goes through a RF cavity where
feels the RF-electric field. On the timescale larger than the
revolution period T0 � 2�=!0, we can describe the syn-
chrotron oscillations in terms of the displacements x that
an arbitrary particle executes in the bunch with respect to
the synchronous particle. For small-amplitude oscillations
in the configurationalx-space, we can assume that the bunch
is in a harmonic-like oscillator potential well of the form
(K=2)x2. Consequently, by taking also into account both
RD and QE, the single-particle model assumed here consists
in a damped harmonic oscillator in the presence of an effec-
tive stochastic force which accounts for the effect of QE. We
point out that the emittance describes a stochastic effect but



related to the temperature of the system, as well as plays the
role analogous to a diffraction parameter, and in the frame-
work of TWM this parameter is involved in the quantization
rules to give a wave equation (Schrödinger-like equation).
In fact, it has been pointed out that in TWM this longitudinal
dynamics of a relativistic bunch with longitudinal velocity
�c (� � 1) is governed by the following Schrödinger-like
equation [2]
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T being the relativistic Lorentz factor (1��
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so-called transition energy which depends on the properties
of the machine guide field; 1=� plays the role of an effective
mass associated with the system), and e�(s) is an arbitrary
function of s, to be specified in correspondence of the par-
ticular stochastic effects considered, but satisfying the ini-
tial conditione�(0) = �. In particular, in [2] the time-varying
function e�(s) has been interpreted as the longitudinal emit-
tance. This way the above Schrödinger-like equation where
the Planck‘s constant is replaced with the functione�(s) cor-
rectly describes the dissipative system under consideration
(electron or positron bunch in the presence of RD and QE).
In [2] the RF strength K was considered constant. Under
this hypothesis, the appropriate r.m.s. emittance scaling law,
due to the damping effect, has been naturally recovered, and
the asymptotic equilibrium condition for the bunch length,
due to the competition between QE and RD, has been found.
We want now to consider the same problem but with the RF
strength depending on s. Then, by solving for a complete set
of solutions of the Schrödinger-like equation we look for the
suitable conditions that select, from this set, the only solu-
tions describing, also for K(s), coherent states associated
with the electron (positron) bunch dynamics.

3 SOLUTION

A complete set of normalized solutions of (1) with K =

K(s) is easily constructed from the one found for K =

constant given in Ref. [2]; it is very easy to see that now
we have the following normalized solutions
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where we have, more generally, introduced the shift x0(s)
in the synchrotron coordinate and �(s) � �1=(4�2(s)) +
i=(2�e�(s)�(s)). Eq. (2) with (3) are solutions of (1) pro-
vided that the functions x0(s), p0(s), �(s), �(s), �0(s), and
�(s) satisfy the following system of coupled differential

equations
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Moreover, the longitudinalmomentum spread can be also
introduced by means of the following quantum-like defini-
tion:
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Consequently, the following uncertainty relation holds:
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which shows that at each s, namely at each time, the
quantity e�(s)=2 could represent the minimum of the
uncertainty product �p(s)�(s) that can be reached for
s = s provided that, at the same time, the condition
(d�=ds)s=s = 0 is satisfied. This would be, of course,
a relative minimum uncertainty because, due to the RD
and QE, the emittance decreases asymptotically toward the
limit �D = 55j�jre
50�e=(24

p
3�s
�

2
0) [2], where re is the

classical electron radius, �0 is the machine mean bending
radius, �s is the synchrotron number, 
 is the damping
rate, and �e is the electron Compton wavelength. This
means that �D=2 corresponds to the absolute minimum
uncertainty whose value, estimated for some present accel-
erating machines is typically 106 � 109 times the Compton
wavelength for electrons �e � �h=mec. In other words,
since the beam, by relaxing, goes to the absolute minimum
uncertainty, �D=2, the corresponding reachable steady state
is an example of GKS coherent states [6]. It is worth noting
that we deal here with a mesoscopical property of coher-
ence. In fact, we do not analyze the microscopical details
of the system, but describe it by a coarse-grained quantum-
like model which retains the essentials of the physics
(i. e., effective possibility of controlled coherence); this
mesoscopical level of description is also testified by the
numerical values of emittance, which are very large with
respect to microscopical length scales, but valuably smaller
than the macroscopical ones. Consequently, the physical
meaning of the uncertainty relation (9) is completely differ-
ent from the Heisenberg uncertainty relation because: (i)
the time variation of ~� has no correspondence with �h which
is only a (fundamental) constant; (ii) Eq. (9) describes the
connection between � and �p for a macroscopical system
which obeys to the classical mechanics.



Nevertheless, the quantum-like uncertainty relation (9)
would be naturally obtained in mesoscopic descriptions,
such as the one used in stochastic mechanics, since in
the Nelson-like description one can naturally introduce a
time-varying diffusion coefficient � � �h=2me even if �h is
kept constant, because in principle some time-variation of
the mass would be possible [11].

4 LOCALLY-CONTROLLED
COHERENCE

Since (2) and (3) represent a complete set of orthonormal
solutions of (1), in particular, we can look for a solution
which at each s keeps the uncertainty at the relative min-
imum value. In fact, from (9) this minimum is reached for
d�=ds = 0, which implies that, by virtue of (6), �4 =e�2(s)=4K(s). Consequently, if � = �0 = const, K(s)

must vary as e�2(s). In principle, this is possible by measur-
ing the emittance reduction toward the asymptotic limit �D
and to use this information in real time to suitably varyK(s)

according to e�2(s).
Note that this possible way to fix the bunch length to a

given value �0 and to have the relative minimum uncer-
tainty is an example of the potential controllingmethod [12]
for constructing, by acting externally, coherent states. This
means that, starting from an instant s for which the equi-
librium condition is satisfied, we have �(s) = �0. For a
given K, after this time, e�2(s) would change and conse-
quently� would change too. But, by adjustingK according
to the measured e�2(s), in principle we can satisfy the equi-
librium condition instant by instant in such a way to recover
�(s) = �0 and reach and control the coherent state. Since
s is a curvilinear coordinate, the correspondence between a
controlled coherent state and each value s fixes a correspon-
dence between this kind of coherent state and the position
of the bunch center along the bunch orbit. For this reason,
we can call these states locally-controlled coherent states,
whose corresponding BWF is, at each s, as one can expect,
the fundamental mode of the set (2) and (3). Note that, ac-
cording to (4), for a given bunch length �0, the mean value
x0 (coordinate of the bunch center in the co-moving frame)
of the particle distributionassociated with locally-controlled
coherent states is a solution of the following classical mo-
tion equation:
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5 CONCLUSIONS

The possibility to produce and control, in an accelerating
machine, coherent states presented above in the framework
of TWM can meet a suitable feasibility in a real accelera-
tor. In fact, in the present accelerating machines, the tech-
niques for beam controlling and beam monitoring are very
well developed and widely used [13, 14]. In particular, feed-
back systems are used in order to control in real time the
evolution of charged particle bunches [13]. In addition,

methods for measuring the instantaneous emittance are also
widely applied [14]. Consequently, there would be no ob-
stacle in principle to conceive, just using the present tech-
nology, a network device which measures the longitudinal
emittance with a suitable scansion, and changes in real time
the strength K of the RF-cavity involved in the longitudi-
nal bunch dynamics, according to the equilibrium condition
for � = �0. In a forthcoming paper, we will develop more
deeply this idea in order to produce a technical design of the
above feedback device.
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