
ALGORITHMS FOR A PRECISE DETERMINATION OF THE
BETATRON TUNE �

R.Bartolini, M.Giovannozzi, W.Scandale CERN, Geneva, Switzerland
A.Bazzani, Dip. di Matematica-Bologna

E.Todesco, INFN-Bologna

1 INTRODUCTION

In circular accelerators the precise knowledge of the beta-
tron tune is of paramount importance both for routine opera-
tion and for theoretical investigations. The tune is measured
by sampling the transverse position of the beam forN turns
and by performing the FFT of the stored data. One can also
evaluate it by computing the Average Phase Advance (APA)
over N turns. These approaches have an intrinsic error pro-
portional to 1=N . However, there are special cases where
either a better precision or a faster measurement is desired.
More efficient algorithms can be used, as those suggested
by E. Asseo [1] and recently by J. Laskar [2]. They provide
tune estimates by far more precise than those of a plain FFT,
as discussed in Ref. [3].
Another important issue is the effect of the finite resolution
of the instrumentation used to measure the beam position.
This introduces a noise and the frequency response of the
beam is modified [4, 5] thus reducing the precision by which
the tune is determined. In Section 2 we recall the methods
based on the APA approach. In Section 3 we introduce the
FFT based methods and the estimate of the algorithmic er-
ror as a function of N . In Section 4 we discuss the effect of
noise.

2 APA TECHNIQUES

APA The APA method (see for instance Ref. [6]) is
used to compute the frequency of an orbit in the 2D phase
space. Given a 2D orbit x(n) with n = 1; :::; N , the tune is
given by the average value of �n:

�APA(N ) =
1

2�(N � 1)

NX
n=2

�n; (1)

where x(n) = (x(n); px(n)) and �n is the phase advance
between the iterate n � 1 and the iterate n. The accuracy
(see Ref. [3]) in the tune estimation is given by

j�APA(N )j �
CAPA

N
: (2)

where CAPA is a numerical constant. This estimate holds
provided the betatron tune is separated by any other spectral
lines by at least 1=N .
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Fitted APA A fitting procedure can improve the
convergence of the APA method. In general the value
of �APA(N ) performs damped oscillations around the
asymptotic value of �0 corresponding to the non–linear
tune. To get rid of the periodic component in �APA(N ) we
introduce the averaged tune, i.e.

< �APA(n) >=
1

n� 1

nX
m=2

�APA(m) (3)

where n = 2; :::; N . This quantity converges to �0 asymp-
totically. Therefore one can give a better estimate by fitting
the averaged APA with a linear regression

< �APA(n) >� �Afit(N ) +
A

n� 1
(4)

where n = 2; :::; N .�Afit(N ) is the estimated value of �0
and A is a constant. Computer simulations performed with
several accelerator models show that the accuracy of this
method is:

j�Afit(N )j �
CAfit

N2
: (5)

where CAfit is a numerical constant. In Fig. 1 we show the
behaviour of the error on the tune determination with APA
and fitted APA starting from a signal made of two main fre-
quencies plus harmonics, given by

z(n) =
X
k

ak e
2�i�0kn +

X
k

bk e
2�i�1kn (6)

where jakj; jbkj < 1, n 2 N. In our simulations we chose
�0 = 0:28 and �1 = 0:31 to simulate the working point of
the LHC. Five harmonics of �0 and �1 with exponentially
decreasing amplitudes are considered.

3 FFT TECHNIQUES

Using N values of the transverse position one can find the
tune by inspecting the power spectrum computed by an FFT
and choosing the value corresponding to the maximum fre-
quency response. There are methods to improve the reso-
lution of the spectral analysis which rely on the assumption
that the spectrum of the transverse oscillations of the beam
contains a limited number of peaks. The peaks correspond
to the eigenfrequencies of the motion or to combinations of
them driven by either linear or non-linear coupling or by
the interplay of synchrotron and betatron motion. In gen-
eral, the harmonics of these peaks decrease very rapidly, and
therefore can be neglected.
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Figure 1: Tune error �(N ) versus N for APA and Fitted
APA for the signal (6)

FFT The time series fz(1); z(2); :::; z(N )gmade ofN
consecutive values of the orbit coordinates, can be expanded
as a linear combination of N orthonormal functions:

z(n) =

NX
j=1

�(�j) exp(2�in�j) �j =
j

N
; (7)

One assumes that the N samples z(n) are in fact extended
in a periodic sampled signal of period N . The Fourier co-
efficients �(�j) are usually evaluated with the Fast Fourier
Transform algorithms. The error associated is due to the dis-
creteness of the frequencies �j, and is given by

j�FFT j �
CFFT

N
CFFT =

1

2
: (8)

where N = 2M . The FFT provides a very fast estimate of
the complete Fourier spectrum; however, the evaluation of
the main frequency is made with a poor precision.

Interpolated FFT Since the error in the FFT estimate is
due to the discreteness of the spectrum, one can obtain better
results by interpolating the shape of the spectrum around the
main peak. The tune is then the abscissa of the maximum of
the interpolating function. We use as interpolating function
the continuous spectrum of a pure sinusoidal signal with un-
known frequency �Fint:

j�(�j)j =

���� sinN�(�Fint � �j)

N sin�(�Fint � �j)

���� (9)

The formula for the tune reads

�Fint =
k

N
+

1

�
atan

�
j�(�k+1)j sin(

�
N
)

j�(�k)j+ j�(�k+1)j cos(
�
N
)

�

(10)
j�(�k)j being the peak of the FFT spectrum and j�(�k+1)j
its highest neighbour. For large N , the error is given by

j�Fintj �
CFint

N2
: (11)

This estimate holds, provided the distance in frequency be-
tween the main peak and any other peak of the spectrum is
larger than 1=N (see Ref. [3]). For N � 1, (10) is well
approximated by

�Fint =
k

N
+

1

N

�
j�(�k+1)j

j�(�k)j+ j�(�k+1)j

�
(12)

which is the formula given by Asseo in [1].

Interpolated FFT with data windowing A standard
approach to improve the accuracy of Fourier analysis is
based on time window filters: the data z(n) are weighted
with functions �(n) (see Ref. [7]). In this case, the Fourier
coefficients of the orbit read

�(�j) =
1

N

nX
n=1

z(n)�(n) exp(�2�in�j) (13)

If we consider Hanning-like filters of order l:

�l(n) = Al sin
l
��n
N

�
(14)

where Al is a normalization constant we obtain that the in-
terpolated value of the tune, in the limit N � 1, reads

�Fint =
k

N
+

1

N

�
(l + 1)�(�n+1)

�(�n) + �(�n+1)
�

l

2

�
(15)

For the Hanning filter, l = 2, the exact formula for the tune
reads:

�FHan =
k

N
+

1

2�
arcsin

�
	sin

2�

N

�
(16)

where

	 = A

�
j�(�k)j; j�(�k+1)j; cos

2�

N

�
(17)

and the function A is given by

A(a; b; c) =
�(a+ bc)(a� b) + b

p
�

a2 + b2 + 2abc
(18)

where � reads

� = c2(a+ b)2 � 2ab(2c2 � c� 1)a2 + b2 + 2abc (19)

The details are given in Ref. [3]. The effect of the filter is
to change the interpolating function (9) as to increase the
width of the main peak centered at �Fint and to decrease
the amplitude of the sidelobes. In fact the height of the lobes
becomes proportional to 1=N l+1 instead of 1=N . The tune
error is:

j�Fintj �
CFHan

N l+2
(20)

where CFHan is a numerical constant. Note that by in-
creasing l the main peak of the interpolating function is
broadened thus reducing the resolution of the algorithm.
The filter (14) with l = 2, is a satisfactory compromise
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Figure 2: Tune error �(N ) versus N for different methods
for the signal (6)
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Figure 3: Tune error �(N ) versus N for different methods
for an initial condition (x; 0; x; 0) at half dynamic aperture
of the CERN SPS

in many different applications. Various interpolation tech-
niques are compared in Fig. 2 on the model given by eq. (6).
The interpolated FFT associated with the Hanning filter per-
forms extremely well and is recommended as the best ap-
proach. Similar results are found with more realistic accel-
erator models and with experimental data obtained at the
CERN SPS and LEP [3, 8]. In Fig. 3 the behaviour of �(N )
for the SPS model is shown.

4 EFFECT OF NOISE

Several perturbing effects can reduce the precision by
which one measures the transverse beam position. The
main source of uncertainty is related to the Analog-to-
Digital-Converter (ADC), used to digitize the position
signal that overcomes all the other perturbations like the
non-linear response of the pick-up, its finite resolution,
the electronic noise, the distortion due to the cable trans-
mission, and so on. The least significant bit (LSB) of the
ADC is equal to zero or one, randomly. In the frequency
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Figure 4: Tune error �(N ) versus N for different values of
the signal over noise power ratio s=n. The signal is given by
equation (21). The tune is computed using the interpolation
of the FFT plus Hanning filter.

domain this introduces a white noise component whose
r.m.s. amplitude is 1=2 LSB. The effect on the tune preci-
sion can be investigated using a simple numerical model
that contains a sinusoidal signal of the type (6) plus a white
noise component of the form

�(n) = z(n) + r(n)LSB; (21)

where r(n) is a random variable equal to 0 or 1.
The reference case, without noise, is compared to several
cases, where the signal to noise power ratio (s=n) vary over
a wide range. The precision by which the tune can be iden-
tified is reduced, as shown in Fig. 4. In particular, the ben-
eficial effect of the Hanning filter is completely lost, even
though the noise is small (s=n = 1000). Similar results
hold for the other Hanning-like filters. On the other hand,
the effect of the noise has a weak dependence on the s=n
ratio. Furthermore, the tune error scales always better than
1=N , even in the extreme case when the noise and the signal
powers are equal [9]
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