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1 INTRODUCTION

In circular accelerators the precise knowledge of the beta-
trontuneisof paramount importanceboth for routineopera
tionand for theoretical investigations. Thetuneismeasured
by sampling the transverse position of thebeam for V turns
and by performing the FFT of the stored data. One can aso
evaluateit by computing the Average Phase Advance (APA)
over N turns. These approaches have an intrinsic error pro-
portional to 1/N. However, there are specia cases where
either a better precision or afaster measurement is desired.
More efficient algorithms can be used, as those suggested
by E. Asseo [1] and recently by J. Laskar [2]. They provide
tune estimates by far more precise than those of aplain FFT,
as discussed in Ref. [3].

Another important issueisthe effect of thefiniteresolution
of the instrumentation used to measure the beam position.
This introduces a noise and the frequency response of the
beam ismodified [4, 5] thusreducing the precision by which
thetuneis determined. In Section 2 we recall the methods
based on the APA approach. In Section 3 we introduce the
FFT based methods and the estimate of the algorithmic er-
ror asafunctionof N. In Section 4 we discuss the effect of
noise.

2 APA TECHNIQUES

APA  The APA method (see for instance Ref. [6]) is
used to compute the frequency of an orbit in the 2D phase
space. Givena?2D orbitx(n) withn = 1, ..., N,thetuneis
given by the average value of 4,,:

1 N
I/APA(N) — mz_:zgn, (1)

wherex(n) = («(n),py(n)) and 0, isthe phase advance
between the iterate » — 1 and the iterate n. The accuracy
(see Ref. [3]) in the tune estimation is given by

C
leapa(N)| < ?\fA )
where C' 4 p 4 isanumerical constant. This estimate holds
provided the betatron tuneis separated by any other spectral
linesby at least 1/N.
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Fitted APA A fitting procedure can improve the
convergence of the APA method. In genera the vaue
of vapa(N) performs damped oscillations around the
asymptotic value of v, corresponding to the non-inear
tune. To get rid of the periodic componentinv ,p 4 (N) we
introduce the averaged tune, i.e.

< vapa(n) >= - i 1 mZ::ZVAPA(m) (3

wheren = 2, ..., N. This quantity convergesto v, asymp-
totically. Therefore one can give abetter estimate by fitting
the averaged APA with alinear regression

A

n—1

<VAPA(n) > VAfit(N)+ (4)
wheren = 2, ..., N.wayzie(N) isthe estimated value of vy
and A isaconstant. Computer simulations performed with
several accelerator models show that the accuracy of this
method is: o
Afi

leafit(N)] < % (5)
where C'4 7, isanumerical constant. In Fig. 1 we show the
behaviour of the error on the tune determination with APA
and fitted APA starting from asignal made of two main fre-
guencies plus harmonics, given by

z(n) — Zak 627Tillgkn + Z bk 62772'1/1kn (6)
k

k

where |ax|, |bx] < 1, n € N. Inour simulationswe chose
vy = 0.28 and v, = 0.31 to simulate the working point of
the LHC. Five harmonics of v, and v; with exponentially
decreasing amplitudes are considered.

3 FFT TECHNIQUES

Using N values of the transverse position one can find the
tuneby inspecting the power spectrum computed by an FFT
and choosing the val ue corresponding to the maximum fre-
guency response. There are methods to improve the reso-
[ution of the spectral analysiswhich rely on the assumption
that the spectrum of the transverse oscillations of the beam
contains a limited number of peaks. The peaks correspond
to the el genfrequencies of the motion or to combinations of
them driven by either linear or non-linear coupling or by
the interplay of synchrotron and betatron motion. In gen-
eral, theharmonicsof these peaks decrease very rapidly, and
therefore can be neglected.
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Figure 1: Tune error ¢(N) versus N for APA and Fitted
APA for thesigna (6)

FFT Thetimeseries{z(1), 2(2), ..., #(N) } made of N
consecutiveva ues of theorbit coordinates, can be expanded
as alinear combination of N orthonormal functions:

N .
2(n) = () exp(riny)  vi= (D)

j=1

One assumes that the N samples z(n) arein fact extended
in a periodic sampled signal of period N. The Fourier co-
efficients ¢(v;) are usually evaluated with the Fast Fourier
Transformagorithms. The error associated isduetothedis-
creteness of the frequencies v, and is given by

1
Crrr Crrr = 7 (8)

lerrr| <

where N = 2M_ The FFT provides a very fast estimate of
the complete Fourier spectrum; however, the evaluation of
the main frequency is made with a poor precision.

Interpolated FFT  Sincetheerrorinthe FFT estimateis
duetothe discreteness of the spectrum, onecan obtain better
resultsby interpol ating the shape of the spectrum around the
main peak. Thetuneisthen the abscissa of the maximum of
theinterpolating function. We use as interpol ating function
the continuous spectrum of apure sinusoidal signal with un-
known frequency v,

sin Nw(vpint — vj)

lo(v;)| =

(9)

Nsin w(vpint — v5)

The formulafor the tune reads

L |¢(vi41)| sin(5F)
Fint = N + ﬂ_atan <|¢(Vk)| + |¢(yk+1)|c08(%))
(10)

|¢(v)| being the peak of the FFT spectrum and |¢ (v 4+1)]
its highest neighbour. For large V, the error is given by

CFint
N2

lepint] < (11)

This estimate holds, provided the distance in frequency be-
tween the main peak and any other peak of the spectrumis
larger than 1/N (see Ref. [3]). For N > 1, (10) iswell
approximated by

v v (pairie) @
which isthe formulagiven by Asseo in[1].

Interpolated FFT with data windowing A standard
approach to improve the accuracy of Fourier anaysisis
based on time window filters: the data z(n) are weighted
with functions x (n) (see Ref. [7]). Inthiscase, the Fourier
coefficients of the orbit read

n

1

(v;) = ¥ Z z(n)x(n) exp(—2miny;) (13)
n=1
If we consider Hanning-likefilters of order I:
xi(n) = A sin! (7;\7_71) (14)

where 4, isanormalization constant we obtain that the in-
terpolated value of thetune, inthelimit N > 1, reads

L <—
N N ¢(Vn) + ¢(Vn+1) 2

For the Hanning filter, [ = 2, the exact formulafor the tune
reads:

VPint =

k 1 . . 27

VPHan = N + py arcsin [\I! sin W] (16)

where
2w

w=a (ol lsleos 3T ) @D

and the function A isgiven by
_ —(adbe)(a—b) +bV/A

Ala,be) = a? + b% + 2abe (18)

where A reads

A =c*(a+b)* = 2ab(2¢? — ¢ — 1)a® + b* + 2abe (19)

The details are given in Ref. [3]. The effect of thefilter is
to change the interpolating function (9) as to increase the
width of the main peak centered at vg;,,; and to decrease
theamplitudeof thesidelobes. Infact theheight of thelobes
becomes proportional to 1/N**! instead of 1/N. The tune

error is:
CFHan

NI+2
where Crgq, iSanumerical constant. Note that by in-
creasing ! the main peak of the interpolating function is
broadened thus reducing the resolution of the algorithm.
The filter (14) with! = 2, is a satisfactory compromise

lepint] < (20)
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Figure2: Tuneerror ¢(N) versus N for different methods
for the signa (6)

=~
Z
Nt
w .
(o2
o
-
121 APA :
) —o0—FFT !
144~ # — FFT interpolated + Hanning l
— - - — FT + Hanning |
-16 - |
1 2 4 5

3
Log N

Figure 3: Tuneerror ¢(NV) versus N for different methods
for aninitial condition (x, 0, #, 0) at half dynamic aperture
of the CERN SPS

in many different applications. Various interpolation tech-
niquesare compared in Fig. 2 onthemodel given by eqg. (6).
Theinterpolated FFT associated with theHanning filter per-
forms extremely well and is recommended as the best ap-
proach. Similar results are found with more realistic accel-
erator models and with experimental data obtained at the
CERN SPSand LEP [3, 8]. In Fig. 3 the behaviour of ¢(NV)
for the SPS model is shown.

4 EFFECT OF NOISE

Several perturbing effects can reduce the precision by
which one measures the transverse beam position. The
main source of uncertainty is related to the Analog-to-
Digital-Converter (ADC), used to digitize the position
signal that overcomes all the other perturbations like the
non-linear response of the pick-up, its finite resolution,
the electronic noise, the distortion due to the cable trans-
mission, and so on. The least significant bit (LSB) of the
ADC is equal to zero or one, randomly. In the frequency
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Figure4: Tuneerror ¢(N) versus N for different vaues of
thesignal over noisepowerratios/n. Thesigna isgivenby
equation (21). Thetuneiscomputed using theinterpolation
of the FFT plus Hanning filter.

domain this introduces a white noise component whose
r.m.s. amplitudeis 1/2 LSB. The effect on the tune preci-
sion can be investigated using a simple numerical model
that contains a sinusoidal signal of thetype (6) plusawhite
noise component of the form

((n) =

where r(n) isarandom variable equal to O or 1.

The reference case, without noise, is compared to several
cases, wherethe signal to noisepower ratio (s/n) vary over
awiderange. The precision by which thetune can beiden-
tified is reduced, as shownin Fig. 4. In particular, the ben-
eficial effect of the Hanning filter is completely lost, even
though the noise is small (s/n = 1000). Similar results
hold for the other Hanning-likefilters. On the other hand,
the effect of the noise has a weak dependence on the s/n
ratio. Furthermore, the tune error scales aways better than
1/N, eveninthe extreme case when the noise and the signa
powers are equal [9]

z(n) + r(n)LSB, (21)
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