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Abstract
We have previously proposed a method for finding
integrable, four-dimensional symplectic maps.  The
method relies on solving for parameter values at which
the linear stability factors of the fixed points of the map
have the values corresponding to integrability.  We
suggest that this method be applied to accelerator lattices
in order to increase dynamic aperture.  We have now
implemented a numerical scheme for the practical
application of this method to accelerator lattices.  Results
will be presented.

1 INTRODUCTION
Accelerator design is a member of a class of problems in
which one has freedom in choosing the Hamiltonian, and
for various reasons one would like to have a system that
is either completely chaotic or uniformly integrable.
Another examples occurs in the design of fusion
confinement devices.  Here we summarize how one might
find symplectic maps with reduced chaos, and,
specifically, how this might be applied to accelerator
lattices to increase dynamic aperture.  This problem is
related to the problem of determining whether a dynamical
system is chaotic [1-7].

The basic ideas for finding integrable systems [8] were
first applied using fixed-point indicators of integrability
[9] in the context of finding itegrable three-dimensional
toroidal magnetic fields.  Such systems are Hamiltonian
of one and a half degrees of freedom [10] and, hence,
correspond to two dimensional symplectic maps.  There
are no such systems known rigorously to be integrable
while having no internal current and nonzero winding
number.  Application of methods similar to those
discussed here allowed one to find systems with greatly
reduced chaotic regions and, therefore, larger confined
plasma volume.  A series of designs were found [11].

Subsequently we applied these ideas to the similar
problem of the dynamics in the uncoupled horizontal
dynamics of an accelerator lattice [12].  As this is also a
system of one and a half degrees of freedom, the method
carried over in a straightforward manner and was
successful, insofar as only one transverse degreee of
freedom was concerned, i.e., for trajectories with initial
conditions (momentum and position) entirely in the
horizontal plane (an invariant plane for the lattices we
considered).  However, an examination of the dynamics of
the four dimensional system (by considering trajectories
with initial conditions out of the horizontal plane) found

that the dynamics was worse.  That is, the four
dimensional volume of confined initial conditions was
found to be smaller even though the uncoupled horizontal
dynamics was improved.  Thus, there remains a need to
determine a scheme for optimization of 4D lattice
dynamics.

2 RESONANCES, FIXED POINTS AND
NONLINEAR DYNAMICS

Chirikov has related chaotic dynamics to resonances [13].
The paradigm for 4D symplectic maps is shown in Fig.
1.  Resonance lines are found from a resonance condition,
l1ω1(J)+l2ω2(J)=mΩ, familiar in the tune diagram of
accelerator physics.  Resonance widths are calculated by
the single-resonance approximation, which gives each of
the widths of the lines.
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Fig. 1.  Action plane chowing resonances and their
widths.  An invariant torus is a point in this plane
such as the one indicated by the asterisk.

Analyzing the resonances for a nonlinear system is
problematic, as typically the underlying integrable system
is not known.  Instead, we consider the fixed points.  At
each of the resonance crossings (locations in tune space
where two resonances operate), there are, at least, 2L fixed
points, where L depends on the resonance indices.  From
the fixed points we will be able to deduce the resonance
strengths.

The linear stability of fixed points of four dimensional
symplectic maps has been studied extensively by Howard
and MacKay [14].  The linearized motion near an Nth

order fixed point is governed by the tangent map, the



derivative of the N-times composed map.  The tangent
map M is represented by a symplectic matrix.  The linear
stability is determined by its eigenvalues.  For symplectic
matrices, if λ  is an eigenvalue, then so are 1/λ , λ*, and
1/λ*.  Thus, eigenvalues come in complex conjugate
pairs on the unit circle (λ=1/λ*), inverse pairs on the real
line (λ=λ*), or complex quadruplets in other parts of the
complex plane.

The eigenvalues can be found by first defining the
stability index [15],

ρ = λ + 1 λ  , (1)

for each inverse pair.  Given the stability indices, which
can be complex, one can solve for the inverse pair of
eigenvalues.  The stability indices are the roots of a
polynomial,

Q ρ( ) ≡ ρ2 − Aρ + B − 2 = 0 , (2)

where

A ≡ Tr(M) (3)

and

B ≡ Tr(M)[ ]2 − Tr M2( ){ } 2 (4)

Our interest is in obtaining maps that are nearly
integrable and, furthermore, have invariant surfaces that
are simply nested tori.  (We do not want island
structures.)  Away from the origin, integrable maps
preserve angular separation δθ: two orbits on the same
torus separated by some angles initially are always
separated by those angles as the angles increase linearly in
time.  This implies that each canonical pair has one
eigenvalue that is unity.  As the generalized eigenvalues
of each canonical pair are inverses, this implies that all of
the eigenvalues are unity.  Thus, the stability index must
be 2, and the values of A and B for integrable systems are

A  =  4 (5a)

and

B  =  6. (5b)

Hence, to reduce the resonance widths at the crossings we
require the conditions (5).

A different condition holds if the trajectory corresponds to
having zero action in one of the planes.  In this case, the
fixed point has only one iterate in that plane, i.e., it
appears to be period-one in that phase plane.  In this case,
one of the oscillation pairs has arbitrary tune -
corresponding to the central tune νy at nonzero Jx or vice
versa.  In this case one must block-diagonalize the
tangent-map matrix and demand that the trace of one of
the 2×2 blocks be equal to two.

3 OPTIMIZATION: WORK IN
PROGRESS

We have now developed an accelerator tracking code [16]
that is capable of finding fixed points and the stability
indices of those fixed points.  Our results show that the
limit of the dynamic aperture of the coupled motion in
ALS occurs where there are several period-six fixed
points.  We now seek to reduce the indicators of chaos.
Doing so should reduce the resonance widths at the
crossing, so that an action plane like that shown in Fig. 2
results.
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Fig. 2.  Action plane after reduction of the chaos
indicators at the fixed points.

However, at this point we do not have optimization
software implemented for reducing the indicators of chaos.
We attempted to use COSY for optimization but were
unsuccessful.  We believe that rescursive optimization is
necessary.  One must find fixed points (one optimization,
in the sense of many accelerator modeling codes) for each
set of parameters.  Then one must find the parameters (the
second optimization) having the correct value of fixed
point tangent map invariants.

4 DISCUSSION
Our hope is that such methods will allow those who need
to develop accelerator lattices to control the chaos in these
systems as much as they now control the linear dynamics.
With this degree of control, large dynamic apertures may
be achievable to have larger capture regions, to provide a
greater region of recapture for scattered particles, and in
strongly nonlinear synchrotron light sources [17] to
produce light beams of greater brightness.  Additionally,
nonlinearity can have a stabilizing effect in at least two
ways.  The effect of perturbations on nonlinear systems is
guaranteed to be small; nonlinear stabilization guarantees
that the associated resonant regions have finite size, and
the spread in tunes can make such systems less
susceptible to collective instabilities [18], which are



strongest when all particles have the same frequency and
resonate together.  Finally, control allows the opposite
possibility: smaller dynamic apertures may be put in
place to, for example, collimate the beam, i.e., reduce its
emittance or energy spread.
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