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Abstract
  
Although the strong-strong simulation is expected to
give the most faithful representation of beam-beam
interactions, since the calculations require a large
amount  of  computer  resources ,  thei r  pract ical
applications are severely limited. This paper presents a
new method, called quasi-strong-strong simulation that
method allows to efficiently calculate effects of beam-
beam interactions without significantly compromising
the advantages of strong-strong simulations.
 

1  INTRODUCTION
  
Traditionally beam-beam effects have been studied by
many researchers with the weak-strong, the rigid
Gaussian and strong-strong schemes. In the weak-strong
scheme, one (weak) beam is represented by a group of
macro-particles, while the other (strong) is assumed to
have a rigid spatial charge distribution. During the
beam collision, the weak beam is subjected to a
Coulombic force due to the fixed charge distribution of
the opposing beam. This force can be expressed by a
Hamiltonian in a manner similar to interactions of the
beam with other elements in an accelerator. Thus
various effects such as reduction of luminosity due to
an emittance growth related to resonances can be
investigated.

In the rigid Gaussian model, the two beams are both
assumed to be of a fixed Gaussian distribution. It is
typically employed in studies of coherent motions of
the beam barycenter. In the strong-strong scheme, the
two beams are both represented by a group of macro-
particles. This method allows to investigate coherent
motions of bunches as well as incoherent weak-strong
phenomena. If each beam is assumed to consist of ’N’
macro-particles, Coulombic forces between N(N-1)/2
macro-particle pairs need to be calculated in each beam
collision. This number ’N’ has to be sufficiently large,
so  a s  to  keep  s t a t i s t i ca l  e f f ec t s  o f  the  bunch
"macronization" on the coherent amplitude (~ 1 N )

reasonably small. Consequently, a reliable strong-strong
simulation requires a large amount of CPU resources,
which frequently renders large-scale, systematic studies

of beam-beam effects near impractical.
This paper presents a new method, called quasi-

strong-strong simulations that has been developed by
the authors. It allows to efficiently calculate effects of
beam-beam in terac t ions  wi thout  s igni f icant ly
compromising the advantages of  s trong-strong
simulat ions.  Two types of  quasi-s trong-strong
simulation for studying beam-beam interactions are
shown: the first method is applied to a study on an
incoherent effect, and the second methods includes an
improvement that allows to study coherent effects.
  

2  FIRST METHOD : INCOHERENT
EFFECT

  
In the first method of quasi-strong-strong simulation,
similar to the conventional weak-strong simulation, one
beam is represented by macro-particles and the other is
assumed to be rigid. However, the roles of strong and
weak beams are switched periodical ly.  After  a
prescribed number (N

T
) of collisions, the size of the

hitherto weak bunch is fixed according to the latest
calculation, and it becomes "strong". From then on the
previously strong bunch is treated as weak, and the
calculations are conducted for the next N

T
 revolutions

until. Then a another switching of strong vs. weak
beams is made and the simulation is continued.

If N
T
 equals 1, i.e. if the switching is done at each

collision, this method is almost equivalent to strong-
st rong s imulat ion with  Gaussian approximations.
Therefore, the calculated coherent amplitude of
particles is subjected to a statistical error of O(1 N ),

where N is the number of macro-particles. However, if
the switching is done at a reasonably large value of N

T
,

by accumulating the data in a strong-weak mode of
calculations for this period, the statistical fluctuation of
the coherent motion is significantly reduced. The value
of N

T
 should be larger than the inverse of fractional tune

and be less than radiation damping time.
This method has been applied to studies of beam-

beam effects of KEKB. Since the damping time at
KEKB is 7000 turns, the N

T
 has been set to 500 turns.

The weak beam is represented by 50 macro-particles.
The strong beam is assumed to have a rigid Gaussian
distribution determined by the beam envelope matrix
[1]. In the simulation synchro-beam interaction [2] is



used to represent beam-beam forces. Effects of the
crossing angle are included[3]. For each collision the
macro-particles in the weak beam are tracked and their
beam envelope matrix is updated. The final coordinates
of each macro-particle in a collision are recorded for
tracking them through a revolution. After N

T
 turns of

collision / revolution cycles, the assignment of weak
and strong beams is switched, and the simulation
continues.

Fig.1 shows vertical beam size of electron and
positron beams in each step. We consider two cases,
that is, one is the case that the damping time of LER is
equal to that of HER, and the other is that of LER is
twice of that of HER. The damping time is controlled
with a damping wiggler. The beam sizes become to
equal each other in the case of the same damping time
for the both rings. In the different damping time, the
positron beam which has a larger damping time blows
u p  a b o u t  t w i c e  i n  emittance. In both case, the
luminosity was 1.4x1034cm-2. This suggests that the
beam blow up comes from a vertical tail[4].
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 Fig.1 Vertical beam size for each switching. (a) Both
rings have equal damping time (with wiggler).  (b) LER
have twice larger than HER (without wiggler).

Table 1 Parameters of KEKB

                                      LER                 HER
Energy(GeV)                3.5                     8
Emittances (nm)           18/0.36              18/0.36
Bunch length (cm)          0.4                    0.4
Damping time (τx(ms))  80-40                 40
Betatron tunes           45.52/45.08        47.52/43.08
Synchrotron tunes      0.01-0.02           0.01-0.02
Beta of IP(m)             0.33/0.008         0.3/0.008
Beam current(A)            2.6                       1.1
Particles /bunch           3.3x10 10             1.4x10 10

Crossing angle (mrad)                11x2
Design luminosity(cm-2s-1)          1x10 34

  

3  SECOND METHOD : COHERENT
EFFECT

  
The second method takes the dipole motions of the
strong beam into account on the conventional weak-
strong method. In this scheme while the macro-particles
in the weak beam feel the force from strong beam with
Gaussian distribution, effects of the same coherent force
on the strong beam is also considered. The kick that is
received by the strong beam is recorded, and the strong
beam is tracked through the ring for the next revolution
accordingly.

Fig.2 shows the dipole oscillation of the weak and
strong beams that has been obtained from a simulation
with this method.  The figure shows there is no dipole
oscillation for our operating tune. The other hand it is
seen that when the vertical tune is close to 0.5, a strong
coherent oscillation (so-called pi-mode) is induced.

This method will be a good approximation for
studying a coherent motion in the weak-strong limit.
When the both beams are strong, it may be very similar
to calculations with a strong-strong simulation with a
rigid Gaussian model. However it will be important that
the framework of this method permits a straightforward
extension to include more complex interactions such as
synchro-beam and crossing angle effects. If this is done,
it will be possible to investigate coherent modes which
couple to synchrotron motion.

We considered only dipole motion of strong beam.
Higher order coherent motions are neglected, although
in principle they can be also taken into account.

Similar technique has been applied to studies of
beam-photoelectron interactions[5] and is also very
powerful for studying ion instability issues, that is, the
two beam instability[6]. In these cases, the weak-strong
limit seems to be satisfied.
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Fig.2 Vertical coherent amplitudes. (a) νx=0.52, νy=0.08,
(b) νx=0.52, νy=0.48.

4  SUMMARY
  
Attempts have been made to circumvent the gap
between the exact strong-strong scheme and weak-
strong and rigid Gaussian model with these two method.
The important point is to the phenomena separate into
coherent dipole and incoherent effects. The concept is
the same for considering rigid Gaussian and weak-
s t r o n g  s c h e m e s .  W e  e x p e c t  t h e  i d e a  i s  g o o d
approximation for real beam-beam phenomena, though
it is difficult to know whether it is reliable until
performing exact strong-strong simulation. It is
interest ing that  one dimensional  s trong-strong
simulation[7] shows consistent results with this idea.
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