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Abstract

The synchrotron equation of motion in quasi-isochronous
(QI) storage rings is transformed to a universal Weierstrass
equation, where the solution is given by Jacobian elliptic
functions. Scaling properties of the QI Hamiltonian are de-
rived. The effects of phase space damping and the sen-
sitivity of particle motion to external harmonic modulation
are studied. We find that the rf phase modulation is particu-
larly enhanced in QI storage rings. Sum rules for resonance
strength coefficients are derived. When the QI dynamical
system is subject to harmonic modulation, it exhibits a se-
quence of period-two bifurcations leading to global chaos
in a region of modulation tune. This means that the oper-
ation of QI storage rings should pay special attention to rf
phase noise.

1 INTRODUCTION

For a regular rf bucket, the maximum bucket height is given
by
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Transition from the nominal rf bucket to the “�-bucket”
occurs when the separatrix of these two buckets merge into
one [1], i.e. ����0
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In the QI regime, wherej�0=�1j � �̂, the Hamiltonian can
be approximated by
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where Hamilton’s equation of motion becomes
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is the small amplitude synchrotron tune.
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2 THE QI HAMILTONIAN

Now, we define the phase space coordinatex and the the
new time coordinatet as

x = �
�1

�0
�; t = �s�: (7)

Then the synchrotron equation of motion becomes

x00 + x� x2 = 0; (8)

where the prime corresponds to the derivative with respect
to the time coordinatet. Letting
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be the conjugate momentum to the coordinatex, the Hamil-
tonian for the QI storage rings becomes
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where(x; p) are conjugate phase space variables.
The equation of motion for a particle with energyE is

given by �
dx

dt
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Letting u = 1p
6

t and} = x, the equation of motion is
transformed to the standard Weierstrass equation [2]:
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where the turning points,e1 � e2 � e3, are given bye1 =
1
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The Weierstrass elliptic}-function is a single valued
doubly periodic function of a single complex variable. For
particles inside the separatrix, the discriminant is positive,
i.e. � = 648E(1� 6E) > 0; and the Weierstrass} func-
tion can be expressed in terms of the Jacobian elliptic func-
tion:
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The period and the tune of the elliptic function are given by

Q =
�[
p
3 sin(� + 60�)]1=2p

6K(m)
: (15)

Figure 1 showsQ(E) as a function of energy. At the cen-
ter of the bucket, whereE = 0, we haveQ = 1 and at
the separatrix, whereE = 1

6
, we haveQ = 0. Because

of the sharp decrease in synchrotron tune near the separa-
trix, parametric resonances induced by the time dependent
perturbation overlap one another and give rise to chaos.
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Figure 1:Q(E) vsE. The first order and the second or-
der detuning terms are also shown. Because of the sharp
drop of the synchrotron tuneQ(E) around the separatrix,
parametric resonances of all orders overlap with each other
near the separatrix trajectory and give rise to stochasticity.

Figure 2: The amplitude of the steady state solution, called
response, obtained numerically is plotted as a function of
!m for A = 0:1 (upper plot), with modulation amplitudes
B = 0:1 (rectangles),B = 0:3 (circles) respectively, and
for A = 0:5 (lower plot) withB = 0:5.

Due to the synchrotron radiation damping, the equation
of motion for QI storage rings is given by

x00 +Ax0 + x� x2 = 0; (16)

where

A =
�

�s
=

U0JE

2�E0�s
; (17)

is the effective damping coefficient with the damping
decrement�. For QI storage rings, the effective damping
coefficient is enhanced by the corresponding decrease in
the synchrotron tune, where the value ofA may vary from
0 to 0.5.

2.1 Expansion of phase space coordinates and
sum rules

Expansion of phase space coordinates in action-angle vari-
ables is important in obtaining essential characteristics of
particle motion. Sincex(t) is an even function oft or  ,
we obtain

x(t) = g0 +

1X
n=1

gn cos(n ): (18)

where expansion coefficients satisfy the sum rule

1X
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Sinceg0 = 1 on the separatrix, the strength of all har-
monics must vanish on the separatrix orbit. BecauseP1

n=1 n
2g2n diverges atJ = Jsep, gn decreases slowly

with respect to the mode numbern near the separatrix.
In the presence of the phase modulation, the Hamiltonian

in the normalized phase space coordinates is given by
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where the effective modulation amplitude is

B =
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!m = �m
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is the normalized modulation tune, anda and�m
are the rf phase modulation amplitude and the modulation
tune in the original accelerator coordinate system, respec-
tively. BecausejBj � j�

0
j�3=2, the effective modulation

amplitudeB is greatly enhanced for QI storage rings.
Including the damping force, the equation of motion be-

comes

x00 +Ax0 + x� x2 = �!mB cos!mt; (22)

where the effective damping coefficientA is given by
Eq. (17).

2.2 Harmonic linearization method and peri-
odic solutions

When the damping parameterA of Eq. (22) becomes large,
the attractor solutions or the periodic solutions can be ob-
tained by the harmonic linearization method [3], where the
ansatz of Eq. (22) is given by

x = X0 +X1 cos(!mt+ �1):



Amplitudes of attractors obtained from numerical simula-
tions are shown in the upper plot of Fig. 2, whereA = 0:1
andB = 0:1 (square) and 0.3 (circle) respectively. The
lower plot shows the amplitude of attractors forB = 0:5
andA = 0:5. Solid lines show the harmonic linearized so-
lution which matches with the attractor amplitude obtained
from numerical simulations. In particular, if the modu-
lation amplitude is large, there are regions of tune space
where attractors will cease to exist and sub-harmonic and
higher-harmonic excitations will appear.
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Figure 3: The phase space map (p; x) of the Poincar´e
surface of section for steady state solutions withA =
0:5; B = 0:5 is shown. The parameterC is the modula-
tion tune!m. The diamond symbol shows a single attrac-
tor at!m = 1:54 which is associated with the 1:1 para-
metric resonance. Rectangular symbols show the period-
two bifurcation, which is related to the 2:1 parametric res-
onance or Mathieu instability. Triangular symbols show
attractors for the second period-two bifurcation, which is
unambiguously identified as the (2:1) secondary paramet-
ric resonance within the primary (2:1) resonance island.
Dots correspond to the strange attractor with global chaos
at!m = 1:39.

2.3 Chaos through period-two bifurcation

The process that dynamical systems develop global chaos
is an fascinating subject. Figure 3 shows Poincar´e sur-
faces of section withA = 0:5; B = 0:5, and!m =
1:39; 1:436; 1:48 and 1.54 respectively. At!m = 1:54,
the system has a single attractor, shown as a diamond, as-
sociated with a 1:1 parametric resonance. At!m = 1:48,
the attractor bifurcates into 2 attractors shown as squares,
which are confirmed to be SFPs of the 2:1 parametric res-
onance. At!m = 1:436, each SFP of the 2:1 parametric
resonance bifurcates into two attractors shown as triangles
within the basin. At!m = 1:39, particles damp to attrac-
tors composed of fractal lines with no definite tune. This
corresponds to the breakdown of the fixed point attractors
within the basin of attraction for the 2:1 parametric reso-
nances. It is also interesting to note that periodic attrac-
tors are located near the band of chaotic attractors shown
in Fig. 3.

3 CONCLUSION

In conclusion, we have transformed the synchrotron equa-
tion of motion in the QI regime into a universal Weier-
strass equation with the solution expressed in Jacobian el-
liptic functions. The phase space coordinates have been
expanded in action angle variables. The expansion coef-
ficients, commonly known as the strength function, play
an important role in determining the strength of parametric
resonances resulting from rf phase or voltage noise.

We have also found that the effective damping force for
the QI Hamiltonian is inversely proportional toj�0j1=2,
hence making the effective damping force larger in QI stor-
age rings. The damping force can increase the stable phase
space area and distort the “phase space ellipse”. However,
we have also shown that the effective rf phase modulation
amplitude is proportional toj�0j�3=2, and thus particularly
enhanced in the QI regime. The effects of rf phase mod-
ulation can induce many parametric resonances. When a
weak damping force is included, the stable fixed point of
the parametric resonance becomes an attractor which is
also the steady state solution of the differential equation.
When the modulation amplitude is increased, our numeri-
cal simulations show that the system exhibits chaos through
a series of period-two bifurcation, where a strange attractor
occured near the onset of global chaos.
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