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Abstract The solution of the equation of motion has the form 
Focusing system as a FODO structure is. in principle, an 

undulator. Radiation from this undulator is split mainly in 
two frequency regions connccled with the periodicity of the 
focusing system and with the betatron wavelength. Intensity 
of the radiation is co~ected with the transverse dimensions 
of the beam. This paper describes the properties of this 
radiation. An algorithm of misaligned element 
identification by using the spectrum analysis of the radiation 
is described also 

x = Zalf(S)ICos[ v9 +x(9) + b] 

where a, b are real constants detemuned by initial 
conditions, If G)l and x(S) are the modules and 
argument of the 2 ~-periodic Floquet function, 

v=--l- 
I 

jj(,!$dS 
2n 0 

is the betatron frequency of particle 

oscillation in the focusing system [7]. The value 
k(9) = If ($)I’ is the envelope function. and 

~Y)=IoydW[~Y)- &I. 

Some methods of the relativistic particle beam 
diagnostics and alignment in linear colliders using the 
radiation emitted by the parncles in the external fields were 
considered in the papers: synchrotron radiation-Ill, sol? 
radiation in quadrupoles -[2] and strange radiation, hard 
radiation in undulators and quadrupoles -[3]. In [4] there 
was considered utilization of radiation from single 
quadrupole lens for the beam positioning. In [S] there was 
calculated an amount of radiation in the focusing system of 
high energy linear collider and there was proposed to use 
this radiation for alignment. 

Some other point of interest for consideration of 
radiation from quadrupole wiggler co~ected with possible 
utilization of such a wiggler as a pick-up in the method of 
optical stochastic cooling [6]. In this case the energy is 
fixed and the description of the radiation properties is 
simpler. 

We will use the solution of the equation of motion in 
periodic system in the form of Floquet function, which 
makes consideration more easy and clean. We will consider 
the radiation from a finite number of the periods by a 
particle moving in one plane. So the radiation is linearly 
polarized in the plane of oscillations. 

A differential equation of a transverse particle 
motion in a quadrupole focusing system is determined by 
Hill’s equation 

~+g(+=o 

where g( 9) = eG( S)L’ i4dmc’y: G( 9) is the gradient of 

the quadrupole magnetic field, y = E/MC2 is the 
relativistic factor, 9 = 2 JR / L, L is the period of the 
focusing system, z is the longitudinal coordinate. The 
function g( 9) is the periodic one, g( 9 + 2 or) = g( 9)) and 

Let us represent the solution in the form 

x = 2a[ v, ( S)Cos v9 + vi ( S)Sin ~591 

v,(9) = ~f~~~Co$xG?~+b] >ry,f@ =lfb9@n[xi@+b] 

and using the expansion v,, = c, v,,,” exp(in9) 

can represent it in the final form x = x, + x,, where 

we 

xv = x,Cosf v9 - b,), 

1, = w-5 x:co+ v+ n) 9 + b:] + x:Cos[ ( v- n) 8 + b:‘l, 
tF1 

1, = W/m, b, = a-d v,Jv,,), 
x: = 24Y,,” -iv,*1 1 x:‘= 4Vk” +hLl, 
b:=arg(yl,m--ivd bi’=arg(vu+k). 

Usually xV >> x,. It means, according to equation of 
motion that &x/d91 z g( 9) xv. I.e. for calculation of the 
acceleration we use the smoothed trajectory and calculate 
the magnetic field as a function of the particle position in 
the quadrupole lens and, hence, acceleration. 

Assuming that g( 9) is odd function and using the 

expansion g( 9) = C~2g,CoslnS) , we can represent 

cfx,/d$ in the form 

d’x,/d9 z xO~:g8[Cos(n + v)&‘+Cos(n - v) 8] 

wheren=2k-l,k=1,2,3... 

2579 



Spectral angular distribution of the encra emitted 
by the particle and falling on the area d.S is determined b> 
the expression 

2, -2 
- = c E I / 2cos u . 

+a 

whcrc zO, = i’lr ~~t)exp(rwr)dl. E(r) IS a vector of the J D 
clectrlc field strength emitted by the part~cle 

It.d-Rr,.iic . 

where c is a particlc charge. R is the distance From the 
particle to the observation point, P is the emission 
moment. t is the moment of observation 

In dipole approximation /?,, << 1 y, which is in 
principle. the requirement for the undulatority factor K on 
the trajectoq of the particle. K = fl,y = eGaL /* /277rm?) is 
small, Kc<1 (p,, is the ma.ximal magnitude of /7,). Here 
Ga is the magnetic field value on the maximal deflection 
from the axis. The bending angle in the quadrupole lens 
p z x,Ga ‘(HR), where (HRj is the magnet rigidity of the 
particle. This angle one can compare with the angle of 
divergence of the radiation = 1 ‘y In typical case 
ye, z 10~” cm rad. ,y z 10’ + lo‘, one can obtain, than 
,YP = lo-’ G- 10.‘. depending of the envelope function value. 
Sowecanwrite 

nxi/ri-p,x/3)=(~-Pllfjp)-~/iif~-P))= 
1 - L 

z -,&I - iip) = -/?(I - @iij 
. 

p= j, +j) z i/?, ) 3 G p, the values for the electrical field 

are L 
‘ii’:=-$,l~~tiq> E?&,l$Q.c~~. 

where k is an unit vector along the longitudinal artis z. 
BL ,a,, are the transverse and longitudinal components of the 

particle velocity 3, i? is an average distance from emission 
region to the observation point, p, = ot, is the phase of 
the wave emitted by a particle “i” in a moment 1, 
corresponds to the moment, when the particle enters a 
quadrupole wiggler. It was supposed that the longitudinal 
dimension of the emission region L_ ; ML << R, where 

M is the number of periods in the region, Ej << 1, ( i 
n = const 

One can see that the time dependence of the electric 
field strength E(r) under conditions of dipole 
approximation copy the time dependence of the particle 

acceleration Et’) in a time scale 1’ ( l- P(kii)) Time 1’ 

is connected with the longitudinal coordinate of the particle 

where ri =cz)‘(l-$). ~,=~~(Z/rm)~fn(mn’~). 

for n=2k-1,or g”=O.for n=2k [S] Thespectrumof 
the radiation is represented by spectral hnes (n f V- fl)fl, 
around the harmonics of the main frequency up to maximal 
values in the wavelengths = a /y2 The main frequency 
f2, which corresponds the period of the FODO structure 
and its harmonics have a sideboards satellites. connected 
with the betatron motion, 
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t’ = t,‘ t z : p = t: t I, 9 ’ 2 7r/!k : I>‘ f 9 a,, . 

where R, = 2,-i/k I is the frequenq. connected \vlth the 
periodicity of the focusing system. t,’ is the time of 
inlvidual particle. 

1 - I, <or 
-=lLP(kii). -it’; -]--/j(ifij. =- 1 ~ &i) 

I’ - ‘[I (0 

That it is why the Fourier transform of the particle 
acceleration is 

/3,. = (l,233~1’)Ex~,o’,‘~~t’ = (I, 27&l” = 2, J-2,. 

where R=wff,~2~~=oL[l-~ij)]~2tifir_~~‘Zy~R, 

Let us consider the particle motion in the system of 
quadrupoles as a FODO structure. Fig 1 In this case taking 

s 

t- 

I, 
f- 

f. 

J+-.- -I j &jp ;,I-;+ 

I!,./‘> i-i -I 
L- 

6.2 

1, =-. +!- ‘2 ,- c 1 

Fig 1 The focusing system. F -is the fc-xsing lens. D-is the 
defocusing one, A -is the accelerating structure. 

into account expression for 8xs/d9:, one can obtain for a 
finite radiation region, containing M periods 

j.,, =+y$) = 
” 

-- 
27r(v-l2)M + Sin - 

V-R 

xn - 
-y cg” 

sn 27zfn + v - R)h4 

1 I’ 

] + Sin[ 27r(n - \’ - f?)n41 

a=1 ?lfV-0 n-\/-L? Ii 



Here we supposed that the energ! does not change 
in the \f ~ggler 
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Fig 2 The qualitative structure of radiation from the 
quadrupole wiggler. 

For estimation the ratio betw)een the fast and slow 
acceleration. one can nnte 

aw 2 1~4 z lrfi x H) my/ I x,Gc’ ‘(HR) = xoc2 “aE‘ , 

where F‘= itfRj Go is the focus distance of the lens. For 
the slow part we have No, ; x,(27rrc :L)2 = xOQO, so the 

ratio IS a@ a,- I L’4dFali.As FzI,:p.where p is 

the phase shift per one period. o* n,_ z Lp /(4n’b>a) 

for some reasonable parameters p = x 2, L a z 10, 
vz 0.25 the ratio oc, nti z 10 Thus one can see the 

importance of this input to radiation 

The formula for electric field zU and for p,, solves 
the problem On the Fig.3 there is represented the structure 
of radiated field for different ratio of the betatron 
wavelength and the wiggler period. Generally if the particle 
has a betatron wavelength much higher, than the period of 
the wiggler. the spectrum looks the similar to the spectrum 
of radiation from the dipole wiggler for the field strength 
fi = Crx, and period, equal to period of FODO structure. 

Now we consider the way of identification of the 
element by the spectrum analyses, noticed briefly in [2]. 
One can see. that the radiation esists at the harmonics of 
the main frequcnq u z 2R,y’, which has a strong 
dependence of the enerB Around this frequency there are 
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Fig.3. The structure of radiation from the quadrupole 
system for different ratio v ‘0, 

From up to down: 0.25; 0.05; 0.015 
the satellites, connected with the betatron motion. If the 
wavelength of the betatron motion is keeping the same 
during the acceleration and the periodic@ of the lenses 
are the same, then the identification becomes obvious. For 
qQica1 energyrz104s10‘, L 3 Im , 
L?, 1271 z 3.10" l&c, . one can obtain, than 
ho z h2L$y' F 2.5-10' + 10” eV. If the radius of irises in 
accelerating structure is r , then the distance on which the 
radiation touches the surface. is ry 
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